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Abstract

This paper suggests incorporating investor probability weighting and the default risk
of individual firms into a consumption-based asset pricing model. The extended model
provides a unified solution for several anomalous patterns observed on financial markets.
The analysis addresses not only widely-recognized asset pricing puzzles, such as the equity
premium puzzle, but also less studied anomalies on financially distressed stocks. The
simulation, under which the model is calibrated according to U.S. historical data, shows
the combination of mild overweighting of probability on tail events and nonlinearity of
equity values caused by default risk has the potential to resolve these patterns.
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1 Introduction

Since the seminal study by Lucas (1978), the consumption-based asset pricing approach has
offered a theoretical deep understanding on the mechanism of asset pricing and investor be-
havior, and has been used for numerous empirical analyses. On the other hand, this approach
produces a number of counterfactual predictions, known as asset pricing puzzles. Although
many researchers have attempted to solve the puzzles, they are still controversial. As such, the
aim of this paper is to provide one possible explanation for the puzzles by proposing a version
of the consumption-based model that includes investor probability weighting and the default
risks of individual firms. To the best of my knowledge, this paper is the first to take both these
factors into account in a consumption-based model.

As a result, in the theoretical section of this paper, I extend the standard consumption-based
asset pricing model from the following three dimensions. First, I consider investor subjective
probability weighting. In the model, the representative investor is assumed not to use objec-
tive probability when evaluating assets but rather a transformed probability obtained from the
objective probability via a probability weighting function. The transformed probability is thus
called subjective probability. The probability weighting function is recognized as an aspect of the
cumulative prospective theory of Tversky and Kahneman (1992), which is a modified version
of the prospective theory of Kahneman and Tversky (1979). The S-shaped probability weight-
ing underestimates the tail events of the outcomes distribution, whereas the inverse S-shaped
weighting overweighs them. A number of experimental studies, such as Tversky and Kahneman
(1992), Wu and Gonzalez (1996), Prelec (1998), and Berns et al. (2007), supports the latter
shape. Consequently, the probability weighting function could thus help understand investor
behavior on the financial markets. Second, I incorporate Merton’s (1974) structural credit risk
modeling in the consumption-based model. Structural modeling employs the contingent claim
approach to evaluate firm debt and equity, which are regarded as put and call options written
on firm value, respectively. It also explicitly expresses the relationship between the default
risk and capital structure of a firm. Thereby, the financial leverage effect on firm debt and
equity is naturally described in the model. In fact, the incorporation of structural credit risk
modeling into the consumption-based model has been less studied in macro financial literature,
despite numerous studies on the structural modeling of credit market analysis. Finally, the
proposed model allows for non-normally distributed random shocks in the economy. In this re-
spect, I consider a time-varying information arrival rate called business time that subordinates
a Brownian motion. As a result, the Brownian motion is transformed into a pure jump process
with highly frequent and small jumps. The dynamic nature of the stochastic process is thus
capable of capturing fat tails for the consumption growth rate distributions. This modeling
is parsimonious, but tractable with only one additional parameter. It allows for simple and
robust calibration to sample data. The concept of business time is closely related to subjective
probability weighting. As such, investor perspective of consumption against the variation in
business time endogenously determines whether he/she is cautious about rare events.

The first half of the simulation explores five major puzzles as follows. (i) Equity premium
puzzle: Fluctuations observed in aggregate consumption predict a too small equity premium
(Mehra & Prescott, 1985). (ii) Excess volatility puzzle: Stock volatility far exceeds dividend
volatility (Shiller, 1981). (iii) Stock return predictability: Future aggregate stock returns are
predictable using the current level of price-dividend ratios (Campbell & Shiller, 1988). (iv)
Risk-free rate puzzle: Observed interest rates seem much smaller than warranted by a model
with reasonable parameters (Weil, 1989). (v) Credit spread puzzle: Credit spreads of corporate
bonds are seemingly too high relative to historical default probabilities (Almeida & Philippon,
2007). A vast literature has already explored a modified version of the consumption-based
model to explain these puzzles, and the proposed model attempts to tackle this challenge as
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well.
The second half of the simulation sheds light on the anomalous patterns observed for finan-

cially distressed stocks, which present a complex picture. Dichev (1998), Griffin and Lemmon
(2002), Campbell et al. (2008), and others report that firms with higher default probability
tend to have lower future stock returns. Moreover, distressed stocks occasionally earn nega-
tive average excess returns. However, this observation contradicts the fundamental principle
of investment theory that investors demand higher premiums from riskier assets. Campbell et
al. (2008) and Avramov et al. (2009) find that distressed stocks have large CAPM betas, de-
spite being weakly correlated with a market portfolio, while their Jensen’s alphas are negative.
Further, Campbell et al. (2008) also document that extremely high volatility for distressed
stocks cannot be diversified by constructing portfolios. This indicates the presence of covari-
ation among the returns on distressed stocks. These anomalously empirical patterns posit a
further challenge for this study.

The analysis lead to the following findings, some of which provide plausible interpretations,
in line with the standard theory of finance, and others novel interpretation. As a prerequisite
for the findings, the representative investor must have mild overweighting of his/her subjective
probability on tail events, which is consistent with past experimental research in behavioral
economics. Another key point is the default risks of individual firms. First, investor cau-
tiousness about tail events lowers the risk-free interest rate because he/she demands significant
precautionary savings. Given such an investor, increasing risk aversion leads to a low inter-
est rate. Second, financial leverage raises equity risk premiums and volatility for individual
firms. Consequently, the market portfolio in the model earns higher expected excess return
than warranted by the standard model. Therefore, the financial leverage effect on firms’ equity
reconciles the equity premium and excess volatility puzzles. Third, the combination of proba-
bility weighting and default risk flawlessly solves the anomalous cross-sectional situation that
expected returns on distressed stocks are decreasing with the deterioration of default risk. As
shown in the analysis, this novel finding is closely related to the shape of the pricing kernel
and optionality of distressed stocks. The investor is willing to hold a distressed stock despite
a low expected return, because he/she think of the stock as a lottery. Finally, the anomalous
correlation structure among distressed stocks is reproduced by the strict nonlinearity of returns
on the distressed stocks against the market portfolio. The nonlinearity causes extremely high
CAPM betas and negative Jensen’s alpha for the distressed stocks as well. In the model, the
seemingly anomalous patterns mentioned above are no longer puzzles but emerge naturally.
Unfortunately, the stock return predictability and credit spread puzzle are not yet settled by
the analysis.

Unlike the present work, past studies address neither major asset pricing puzzles, such as the
equity premium puzzle, nor the anomalous patterns observed for financially distressed stocks.
There has been a wide range of studies that propose alternative asset pricing models to explain
major puzzles. A list of the prominent examples of these alternative models is as follows: recur-
sive utility (Epstein & Zin, 1989; Weil, 1989), habit formation (Campbell & Cochrane, 1999),
long-run risk (Bansal & Yaron, 2004; Bansal et al., 2012), rare disasters (Reitz, 1988; Barro,
2006), heterogeneous preferences (Gârleanu & Panageas, 2015), probability mistakes (Shiller,
2014), idiosyncratic risk (Constantinides & Duffie, 1996), and ambiguity aversion (Hansen &
Sargent, 2001). Within the class of consumption-based asset pricing frameworks, the proposed
model may be another workable framework, along with the existing consumption-based models
listed above. Cochrane (2017) presents a survey of various types of asset pricing models in
macro-finance and their relationship to asset pricing puzzles.

By contrast, relatively few studies address the construction of a model to explain anomalous
patterns in distressed stocks. For example, Garlappi and Yan (2011) explicitly introduce finan-
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cial leverage into an equity valuation model. They demonstrate the possibility of shareholder
recovery upon financial distress causes a seemingly anomalous relation between an expected
stock return and default probability. However, they follow a partial equilibrium approach.
Relevant literature is discussed in more detail in Section 3.5.

The remainder of this paper proceeds as follows. Section 2 presents the model and develops
the main intuitions for the effect of investor probability weighting and default risk of individual
firms on asset pricing. Section 3 discusses calibration and simulation. Section 4 concludes the
paper. Further, the Appendices contain all proofs and some technical supplements.

2 Model

This section aims to construct a version of the consumption-based asset pricing model to explore
solutions for asset pricing puzzles. The model developed below allows for investor subjective
probability weighting and the default risk of firms simultaneously. For simplicity, the model is
assumed to be driven by only one common factor, without any idiosyncratic factors.

2.1 Basic Setup

Assume an endowment economy satisfying a no-arbitrage condition. Let Ct be the objective
aggregate consumption process. It is assumed that its log growth rate Rt follows stochastic
process

Rt := log
Ct
C0

= µt+ σW (τt), (1)

where µ and σ are constants and W (t) is a standard Brownian motion. Here, τt is the business
time at time t, contrasting with calendar time t, which is also known as the subordinator in
stochastic calculus. That is, τt is an increasing Lévy process,1 independent of W (t), such that
EP[τt] = t for all t ≥ 0, where EP[ · ] denotes an unconditional expectation operator under the
objective probability measure P. Roughly, this time scale can be thought of as the integrated rate
of information arrival. Another interpretation of the business time is the integrated stochastic
volatility of W (t). The economy is rapidly changing when τt > t, and vice versa. Panels A and
B in Figure 1 visualize sample paths of the business time. For a more detailed interpretation
of business time, see Cont and Tankov (2004) and Carr et al. (2003). The mean, variance, and
skewness of the log growth rate Rt are µt, σ

2t, and zero, respectively, while the excess kurtosis
equals 3Var[τ1]/t. Therefore, the stochastic business time makes the log consumption growth
rate non-Gaussian distributed. Hereafter, L(θ) denotes the Laplace exponent of business time
τt, defined as

L(θ) := 1

t
logEP [eθτt] ,

with parameter θ ∈ Dτ , where domain Dτ is a subset of the complex plane, such that the
Laplace exponent is well defined. Note that the Laplace exponent is a deterministic function of
θ, independent of time t. See Appendix A.2 on the detailed properties of the Laplace exponent.

There is an infinitely lived representative investor in the economy, who has a power utility
function over aggregate consumption. However, his/her subjective view about the future growth
rates of aggregate consumption does not follow the stochastic process (1), but

RS
t := log

CS
t

CS
0

= Rt + ω (τt − t) = µt+ σW (τt) + ω (τt − t) ,

1See Appendix A for the definition and fundamental properties of Lévy processes.
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where CS
t denotes the investor’s subjective consumption process and ω is called the subjective

parameter. For ω < 0, the investor believes consumer sentiment will deteriorate due to rapid
changes in the economy, and vice versa. Only when ω = 0, subjective future consumption
coincides with the objective one at any time. The subjective mean of a consumption growth rate
is confined to µt in any case, although the other subjective moments, such as variance, skewness,
and kurtosis, might vary from the objective ones. Consequently, the investor’s expected utility
takes the form

EP

[∫ ∞

0

e−δt
(
CS
t

)1−γ
1− γ

dt

]
,

with the rate of time preference δ and the relative risk aversion γ being non-negative constants.
Following Lemma A.3 in Appendix A.2, both log consumption growth rate processes Rt

and RS
t turn out to be Lévy processes, also called subordinated Brownian motions. In many

textbooks on continuous-time asset pricing theory, the stochastic process for describing market
uncertainty is typically assumed to be a Brownian motion, which becomes a special case when
τt = t for all t ≥ 0 in this framework, belonging to the class of Lévy processes. Although
a Brownian motion might perform as a benchmark model in this paper, there are numerous
advantages to adopting such Lévy processes for more realistic modeling. Lévy processes provide
a flexible framework for describing discontinuous fluctuations in aggregate consumption. For
example, the variance gamma process proposed by Madan and Seneta (1990), which has a
gamma process as the business time, is a finite variation process with infinite but relatively
low activity of small jumps. On the other hand, the normal inverse Gaussian process originally
developed by Barndorff-Nielsen (1997), which equips an inverse Gaussian process as the business
time, is an infinite variation process with high activity of small jumps. Since such processes have
non-Gaussian distributed increments, they can produce skewness and excess kurtosis of the log
consumption distribution. In the theory of financial derivatives, a large number of studies used
Lévy processes categorized within subordinated Brownian motions to model the dynamics of
underlying asset prices. For instance, see Cont and Tankov (2004), Schoutens (2003), Rachev et
al. (2011). On the other hand, regarding macro-finance literature, few studies explicitly address
the stochastic business time. For instance, Yamazaki (2018) examines investor sensitivity of
business time on stock index option prices. For the simulation, the variance gamma and normal
inverse Gaussian processes will be considered.

2.2 Stochastic Discount Factors and Probability Weighting

Investor’s subjective stochastic discount factorMS
t can be decomposed into two parts as follows:

MS
t := e−δt

(
CS
t

CS
0

)−γ

= MO
t

dPS

dP

∣∣∣∣
t

, (2)

where MO
t denotes the objective stochastic discount factor defined by

MO
t := e−δ̄t

(
Ct
C0

)−γ

, (3)

with the adjusted time preference parameter δ̄ := δ − γω − L(−γω) and

dPS

dP

∣∣∣∣
t

:=
e−γω(τt−t)

EP
[
e−γω(τt−t)

] = exp {−γωτt − L(−γω)t} , (4)
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which is the Radon-Nikodym derivative that defines investor’s subjective probability PS .
Next, risk-neutral probability Q is defined by the Radon-Nikodym derivative as

dQ
dP

∣∣∣∣
t

:=
MS

t

EP
[
MS

t

] = ertMS
t = ertMO

t

dPS

dP

∣∣∣∣
t

=
dQ
dPS

∣∣∣∣
t

×dP
S

dP

∣∣∣∣
t

,

where r denotes the risk-free rate in the economy, whose formal expression will be derived in
Section 2.4, and

dQ
dPS

∣∣∣∣
t

:=
MO

t

ES
[
MO

t

] = ertMO
t ,

where ES [ · ] denotes an unconditional expectation operator under subjective measure PS . As
a result, the present value of an arbitrary cash flow paid at time t, which is assumed to be a
random variable Xt, has three equivalent representations:

EP [MS
t Xt

]
= ES [MO

t Xt

]
= EQ [e−rtXt

]
, (5)

where EQ[ · ] denotes the risk-neutral expectation operator. According to (2), this present value
is also represented as ∫

MO
t Xt

(
dPS

dP

∣∣∣∣
t

)
dP.

Therefore, the Radon-Nikodym derivative (4) can be thought of as the probability weighting
function of the representative investor. It is worth noting subjective parameter ω determines
not only the subjective view on future consumption, but also investor probability weighting
when evaluating any asset.

Considering probability theory, each change of probability measure in (5) can be viewed
as the Esscher transform, as shown below. The Esscher transform alters the drift term and
jump structure of a Lévy process, whereas the variance component is unchanged. Appendix
A.3 briefly discusses the Esscher transform by an arbitrary Lévy process and provides general
representations for the transformed drift term and jump structure.

• The change of measure from objective probability P to subjective probability PS via
the probability weighting function (4) is the Esscher transform by business time τt with
parameter −γω.

• The change of measure from subjective probability PS to risk-neutral probability Q via the
objective stochastic discount factor (3) is the Esscher transform by objective consumption
growth rate Rt with parameter −γ.

• The change of measure from objective probability P to risk-neutral probability Q via the
subjective stochastic discount factor (2), which is the product of the above two Esscher
transforms, is the Esscher transform by subjective consumption growth rate RS

t with
parameter −γ.

2.3 Consumption Growth Rate Distributions

The characteristic functions of consumption growth rate distributions under the three proba-
bility measures P, PS , and Q are useful as follows. First, almost all computation formulas in
this paper are represented as the generalized Fourier transform of them (See Appendix C for

6



the derived formulas). Second, the characteristic functions are tractable to compute the funda-
mental statistics of Rt, such as standard deviation, skewness, and excess kurtosis. Third, the
cumulative distribution and density functions of Rt can be immediately obtained from so-called
Lévy’s inversion theorem. Recall the objective consumption growth rate process Rt is a Lévy
process. Additionally, a transformed Lévy process by the Esscher transform also belongs to
the class of Lévy processes. Therefore, applying the Lévy-Khintchine formula stated in Lemma
A.1, the characteristic function of a distribution of Rt can be expressed as

Φ∗
Rt
(θ) := E∗ [eiθRt

]
= etφ

∗
R(θ), (6)

where superscript ∗ takes an arbitrary probability measure of P, PS , or Q. From Lemma A.3,
the characteristic exponent of Rt under the objective probability P takes the form

φP
R(θ) = iθµ+ L(−θ2σ2/2). (7)

The subsequent lemma provides the general representations of the characteristic exponents of
Rt under subjective and risk-neutral probability measures.

Lemma 1 The characteristic exponent of Rt under subjective probability PS is given by

φS
R(θ) = iθµ+ L(−θ2σ2/2− γω)− L(−γω). (8)

Moreover, the characteristic exponent of Rt under risk-neutral probability Q is given by

φQ
R(θ) = iθµ+ L((iθ − γ)2σ2/2− γω)− L(γ2σ2/2− γω). (9)

Proof of Lemma 1: See Appendix B.1. □

In the following, I also use the moment generating function of the distribution of Rt under
arbitrary probability, which is denoted by Ψ∗

Rt
(θ) with parameter θ ∈ DR, where domain DR

is a subset of the real line, such that the function is well defined.
Note the subjective distribution of Rt determined by characteristic exponent (8) differs from

the objective distribution of RS
t . The former is linked to relative risk aversion γ, but the latter

is not, and its characteristic exponent is given by

φP
RS (θ) = iθ(µ− ω) + L(−θ2σ2/2 + iωθ).

Subjective parameter ω causes the objective distribution of the subjective consumption growth
rate RS

t to be skewed. The sign of ω corresponds to sign of the skewness. Table A.2 exhibits
the Laplace exponents and cumulants for the consumption growth rate process modeled by a
Brownian motion, variance gamma process, and normal inverse Gaussian process. The forms of
these processes are invariant to the Esscher transforms, but their parameters are transformed.
Table A.3 shows the transformed parameters corresponding to each probability measure. In-
terestingly, transformed parameter ωS in Panel B of Table A.3 equals zero, and then the third
cumulant in Table A.2 is also reduced to zero. This means the subjective distribution of the
objective consumption growth rate is not skewed. The subjective parameter affects only the
standard deviation and kurtosis in the subjective distribution.

Several extant studies investigate the relationship between objective and risk-neutral dis-
tributions. For example, Yamazaki (2018) examines the impact of stochastic business time
on a risk-neutral distribution of stock index returns, but only for a risk-averse investor with
non-biased probability weighting (γ > 0 and ω = 0). His conclusion is that the tail of the risk-
neutral density function is fatter than that of the objective density function, and the skewness
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of the risk-neutral distribution is more negative than that of the objective distribution. This
implies a risk-averse investor worries about downside risk of the stock index when evaluating
any assets. Tables A.2 and A.3 indicate similar characteristics for consumption growth rates.
This inclination becomes evident from the negative value of ω. An exceptional case is the
Brownian motion. In this case, the mean of the risk-neutral distribution shifts from the mean
of the objective distribution, whereas the shape of the distribution remains unchanged.

2.4 Interest Rate

The purpose of this subsection is to determine the risk-free interest rate at market equilibrium.
I define the risk-free interest rate as r(t) := − 1

t logB(t), where B(t) denotes the present value
of a zero-coupon risk-free bond that pays one unit at maturity t. Specifically, r(t) is also called
yield to maturity.

Proposition 1 (Interest Rate) The risk-free interest rate is unvarying over maturity and
given by

r = δ + γµ− γω − L(γ2σ2/2− γω). (10)

Proof of Proposition 1: See Appendix B.2. □

As previously mentioned, the consumption growth rate Rt is a Lévy process even under risk-
neutral probability. Due to the stationary increment property of Lévy processes, in this frame-
work, the risk-free interest rate is constant over time and the yield curve is always flat.

Up to the second term on the right-hand side of (10), δ + γµ is called the steady-state
interest rate in the field of the deterministic neoclassical growth modeling, while the remaining
terms, −γω − L(γ2σ2/2 − γω), are known as the precautionary savings term. For example, if
τt = t for all t ≥ 0, which is a Brownian motion case, the precautionary savings term is written
as −σ2γ2/2. In this case, the larger variance of the consumption growth rate decreases the
precautionary savings term. Whereas higher risk aversion decreases the precautionary savings
term, it increases the steady-state interest rate when expected growth rate µ is positive. This
trade-off relation is controversial. In response to this incompatibility, Weil (1989) asserts the
risk-free rate puzzle that the level of interest rates estimated by the standard asset pricing
model is much higher than interest rates observed in the market. However, the variance of
consumption growth rates estimated from sample data is too small to match the model-implied
interest rate with historical average of interest rates.

The proposed model allows for a more flexible setting than asset pricing models based on
Brownian motions. Proposition 1 indicates the model has two sources to reconcile the risk-free
rate puzzle: the Laplace exponent of business time L(θ) and subjective parameter ω. These are
elements of the precautionary savings term, but not relevant to the steady-state interest rate.
Barro (2006), Gabaix (2012), Wachter (2013), and others introduce large negative jumps into
aggregate consumption as macroeconomic disasters, which cause the consumption growth rate
distribution to be negatively skewed and fat-tailed. As a consequence of taking rare disasters
into account, the precautionary savings term can take a sufficiently negative value, thus allowing
for the reproduction of a plausible level of interest rate. On the other hand, this study introduces
business time into a Brownian motion, which generates frequent infinitesimal jumps in aggregate
consumption. Additionally, I am also concerned with how much subjective parameter ω affects
the interest rate. These two components are expected to induce more precautionary savings.
Therefore, Lemma A.2, which characterizes the Laplace exponent L(θ), might be helpful to
understand the behavior of the precautionary savings term.
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2.5 Firm Value

In past studies on consumption-based asset pricing, the standard modeling of the cash flow
generated by a firm linked with aggregate consumption is Cνt , where ν is a positive constant
called the leverage parameter. For example, Abel (1999), Campbell (2003), Backus et al. (2011),
and Wachter (2013) adopt such modeling. In this modeling, if increments of log consumption
are independent and identically distributed, the cash flow growth rate is ν-times as large as
the consumption growth rate at any time. This property may be convenient to the cash flow
growth rate having a higher standard deviation than the consumption growth rate. However,
there exists an inconvenience: The expected cash flow growth rate tends to be extremely high.
To avoid this problem, firm cash flow Zt is modeled as

log
Zt
Z0

:= ζt+ σzW (τt) = (ζ − µν)t+ νRt, (11)

where ζ is a constant called the cash flow drift term, and σz a positive constant such that
σz = νσ. This modeling allows to calibrate cash flow drift term ζ and leverage parameter ν
separately, both of which being firm-specific. Obviously, the log cash flow rate (11) is an affine
transform of objective consumption growth rate (1). If ζ = νµ, which means the expected
cash flow growth rate is ν-times as large as the expected consumption growth rate, model
(11) coincides with standard modeling, that is, Zt = Cνt at any time. According to cash flow
modeling, firm value at time t can be represented as

Vt = EP
t

[∫ ∞

t

MS
u

MS
t

Zudu

]
= EQ

t

[∫ ∞

t

e−r(u−t)Zudu

]
, (12)

where E∗
t [ · ] is a conditional expectation operator given information until time t with respect

to an arbitrary probability measure.
Throughout the paper, the following assumption among model parameters is imposed upon

all firms. As per the proof of Proposition 2, this assumption is the transversality condition on
a firm value, that is, 0 < Vt <∞ at any time t.

Assumption 1 (Transversality Condition) Model parameters satisfy the inequality

δ + γµ− ζ − γω − L(σ2(ν − γ)2/2− γω) > 0.

The next proposition presents a simple closed-form representation of the firm value given in
(12) under Assumption 1.

Proposition 2 (Firm Value) Firm value (12) is represented as

Vt =
Zt
ξ
,

where

ξ := δ + γµ− ζ − γω − L(σ2(ν − γ)2/2− γω).

Proof of Proposition 2: See Appendix B.3. □

Proposition 2 shows the log growth rate of a firm value coincides with the log growth rate of
its cash flow. That is, the firm value drift term equals ζ and the standard deviation of the firm
value growth rate equals σz. Consequently, firm-specific parameter σz is named asset volatility.
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Included into the cash flow modeling (11), Proposition 2 indicates firm value is proportional to
the ν-th power of the objective aggregate consumption. That is, it can be written as

Vt =
Z0

ξ(C0)ν
e(ζ−µν)t(Ct)

ν . (13)

The representation above is very important to interpreting debt and equity values, which will
be subsequently discussed.

Note that the log growth rates of a firm value, its cash flow, and objective aggregate con-
sumption are perfectly correlated with each other. Moreover, for any individual firms with
different firm-specific parameters, the log growth rates of their cash flows and firm values have
perfect positive correlations among them. Of course, this perfectly correlated structure is caused
by all growth rates being modeled as simple linear regressions of common driving factor W (τt)
under objective probability.

2.6 Debt Value and Credit Spread

I incorporate the structural credit risk modeling by Merton (1974) into a consumption-based
asset pricing model for introducing default risk into the framework. The model takes default
risk into account when evaluating a firm’s debt and equity.

Assume a firm issues a single debt, carrying a promised terminal payoff F , which is inter-
preted as the face amount of a corporate zero-coupon bond maturing at time T . Postulate that
a default event may only occur at the debt’s maturity date, T . If the firm value at maturity VT
is less than or equal to the debt’s face amount F , the firm is forced to default. Otherwise, the
firm does not default. It is assumed that, when the default event occurs, a corporate law such
as Chapter 11 in the United States or the Civil Rehabilitation Law of Japan invariably applies
to the bankrupt firm, which still continues its business operations. Even after the default event,
the firm generates ongoing cash flow. However, as a result of the default, the bankrupt firm
must perform a 100% capital reduction, meaning the equity value becomes worthless and the
firm pays only amount εVT towards the debt, where ε ∈ [0, 1] denotes a constant recovery rate
equal to the bankruptcy costs for liquidating the firm. On a perfect market, ε = 1 holds for
any firm. If the firm does not default until maturity, its debt is repaid in full at maturity.

Consequently, the payout of the firm’s debt at maturity T can be written as F1{VT>F} +
εVT1{VT≤F}. Therefore, the present value of the debt D(T ) is expressed as

D(T ) = EP
[
MS

T

(
F1{VT>F} + εVT1{VT≤F}

)]
= e−rTEQ [F1{VT>F} + εVT1{VT≤F}

]
. (14)

As a computation formula for the debt value (14), the following proposition is presented.

Proposition 3 (Debt Value) Let ΨQ
RT

(θ) be the risk-neutral moment generating function of
RT and

AQ
a,b(k, T ) := EQ [eaRT+bk1{RT>k}

]
(15)

be the deterministic function, whose expression for computation is given by Lemma C.1 in
Appendix C. Then, debt value (14) has the form

D(T ) = e−r̄TV0

[
εΨQ

RT
(ν)− εAQ

ν,0(k, T ) +AQ
0,ν(k, T )

]
,

with r̄ := r + µν − ζ and k := ν−1 log(F/V0) + (µ− ζν−1)T .
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Since the seminal work of Merton (1974), a corporate bond has been identified with a default-
free bond plus a short position in a put option written on firm value. Certainly, it is possible to
interpret debt value (14) in this context. Additionally, recall that the firm value is proportional
to the νth power of the aggregate consumption according to (13). As a result, one can newly
interpret a corporate bond as a default-free bond plus a short position in a power put option with
ν-exponent written on aggregate consumption. In other words, the debt is a type of contingent
claim on consumption expenditure. A power option is one of the financial derivatives whose
payoff is based on the price of an underlying asset raised to a power. Such derivatives are
designed to allow option holders to take a leveraged view on the underlying asset.

The credit spread of a corporate bond with maturity T denoted by spr(T ) takes the form

spr(T ) := − 1

T
log

D(T )

F
− r

=
1

T

[
νk − log

(
εΨQ

RT
(ν)− εAQ

ν,0(k, T ) +AQ
0,ν(k, T )

)]
. (16)

The objective probability of default until time T is given by

P(VT < F ) = 1−AP
0,0(k, T ), (17)

where AP
a,b(k, T ) is defined in the same manner as (15), but under objective probability P. The

levels of the credit spread and default probability depend on the debt ratio, defined as the ratio
of the face amount of the debt to current firm value; F/V0; the cash flow drift term ζ; and
leverage parameter ν, all of which are firm-specific. Besides these factors, the credit spread and
default probability are also subject to the distribution of consumption growth rate RT . Note
that risk aversion parameter γ and subjective parameter ω, both of which determine investor
characteristic, are only related to the credit spread.

The credit spread puzzle, named by Amato and Remolona (2003), can be regarded as in-
compatibility between the levels of credit spread and the default probability warranted by a
structural credit model with reasonable parameters. In response to this puzzle, a number of
authors have analyzed a wide range of structural firm value models. The model in this paper
has two main different characteristics from existing models. One is introducing investor’s sub-
jective view on future economic conditions into the model, which is equivalent to probability
weighting. The purpose of this study is to investigate how much subjective parameter ω affects
credit spread when the probability of default is given. The other feature is the jump structure
of stochastic modeling. Almost all past studies have incorporated rare and large jump risk
premiums into their analyses (e.g., Collin-Dufresne et al., 2010; Driessen, 2005; and Cremers
et al., 2008). By contrast, I consider highly frequent and small jumps in market fluctuations,
occasionally without any continuous random shocks.

2.7 Equity Value

Assume a firm pays a dividend ηZt at each time t, where η ∈ [0, 1] denotes the dividend payout
ratio to cash flow. Since the liquidation value of equity at debt maturity T is (VT − F )+, the
present value of equity E(T ) is represented as

E(T ) = EP

[∫ T

0

MS
uηZudu+MS

T (VT − F )+

]
(18)

= EQ

[∫ T

0

e−ruηZudu+ e−rT (VT − F )+

]
.
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The first term in the expectation operator on the right-hand side of (18) is the present value of
the dividend payment until time T . From (18), Proposition 2, and the definition of cash flow
Zt, the following proposition is obtained.

Proposition 4 (Equity Value) Let AQ
a,b(k, T ) be the function defined in (15) and

Ia(r, T ) := EQ

[∫ T

0

e−rueaRudu

]
be the deterministic function, whose expression for computation is given by Lemma C.2 in
Appendix C. Then, the equity value (18) takes the form

E(T ) = V0

(
ξηIQν (r̄, T ) + e−r̄T

[
AQ
ν,0(k, T )−AQ

0,ν(k, T )
])
,

where r̄ := r + µν − ζ and k := ν−1 log(F/V0) + (µ− ζν−1)T .

In the following, assume a perfect market (ε = 1) for simplicity. If a firm has debt and pays
part of its cash flow as dividends to shareholders, the total value of the debt and equity does
not necessarily coincide with firm value. That is, D(T ) + E(T ) ̸= V0 when η < 1. This is
because neither debt holders or shareholders do not fully receive the cash flow from the firm.
Only when the dividend payout ratio is 100%, the total value of the debt and equity equals
firm value. That is, D(T ) + E(T ) = V0 if and only if η = 1. When a firm has no debt and
100% dividend payout ratio, the firm is default-free and equity value equals firm value. That
is, P(VT < F ) = 0 and E(T ) = V0 if F = 0 and η = 1. In this case, with additional conditions
ν = 1 and ζ = 0, the equity is entirely identified with the classic Lucas model (Lucas, 1978).
For this reason, the model in this paper is a modified version of the Lucas tree model.

Following (13), the second term in the expectation operator on the right-hand side of (18)
can be thought of as the price of a power call option with exponent ν and strike price F
written on aggregate consumption. Therefore, the equity value is nonlinear with respect to the
aggregate consumption and is increasing with the volatility of consumption as well as the level
of consumption. At-the-money for the option corresponds to the threshold of firm’s insolvency.
The value of a power call option tends to increase at an accelerated pace when aggregate
consumption is near or at-the-money.

The price-dividend ratio defined as

E(T )

ηZ0
= IQν (r̄, T ) +

e−r̄T

ξη

[
AQ
ν,0(k, T )−AQ

0,ν(k, T )
]
,

is also an interesting indicator that highly depends on debt ratio F/V0. As previously stated,
if F = 0 and η = 1, then E(T ) = V0 and the model is identical to the classical Lucas model.
In this case, the price-dividend ratio is reduced to ξ−1. Although this is a well-known result
derived from the Lucas model2, it seems unrealistic because the price-dividend ratio is un-
varying in terms of firm-specific factors such as the debt ratio. The puzzle called the stock
return predictability says that future aggregate stock returns are partly predicted by the price-
dividend ratio. Concretely, a lower price-dividend ratio forecasts higher stock returns, and vice
versa. Since, I am concerned with this anomalously cross-sectional relationship, the question
is whether introducing probability weighting and default risk into the model allows for stock
return predictability.

2Specifically, in the original Lucas model, dividends are log-normally distributed (L(θ) = θ) and identical to
the aggregate consumption (ζ = µ and ν = 1), and the representative investor has log-utility (γ = 1). Then,
the price-dividend ratio equals δ−1, which is a well-known result because of ξ = δ by the definition of ξ.
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2.8 Equity Risk Premium, Volatility, and Correlation

This subsection presents the definitions of equity risk premium, equity volatility, stock return
correlation, and stock index used in the framework. For a single firm, the total amount of the
future value for dividend payments until time T and the liquidation value of equity at time T
is expressed as

ΛT :=

∫ T

0

er(T−u)ηZudu+ (VT − F )+. (19)

Thence, I define the gross rate of return on the equity realized at time T as ReT := ΛT /E(T ).
Incidentally, the gross rate of return on a risk-free zero-coupon bond with maturity T is defined
as RfT := 1/B(T ) = erT .

2.8.1 Equity Risk Premium and Volatility for Individual Stocks

The equity risk premium on a single stock is defined as

EP [ReT ]−RfT =
EP [ΛT ]

E(T )
− erT , (20)

and the equity volatility as

σP [ReT ] =
1

E(T )

√
EP [(ΛT )2]− EP [ΛT ]

2
, (21)

where the computation formulas for the first and second moments of ΛT are provided in Ap-
pendix D.

Similar to the equity value discussed in Section 2.7, the expected future value of total equity
payout EP[ΛT ] can be thought of as the expected payoff of a power call option written on
aggregate consumption. This is the reason why the expected stock returns, equivalent to the
equity risk premium, have a nonlinear relation with each other. Firms are expected to have
different levels of equity volatility due to different levels of debt ratio, even if they have the same
firm value. Note that the equity risk premium and equity volatility are affected by investor
probability weighting via equity value E(T ), although the superscript on the statistic operators
in definitions (20) and (21) takes only objective probability P at a first glance.

The excess volatility puzzle refers to the fact that, from empirical observations, stock prices
seem much more volatile than dividend payments. Recall that volatility of dividend payments
in the model is identical to asset volatility σz = νσ, which is also identical to cash flow volatility.
Therefore, this puzzle can be formulated by the following inequality:

σP [ReT ] ≫ σz.

2.8.2 Stock Return Correlation and Stock Index

Now consider a multi-stock market in which there are L firms, indexed by l = 1, . . . , L, that
might have different firm-specific parameters and debt ratios. Thence, the correlation between
the stock returns of firms 1 and 2 is expressed as

CorrP [Re1T , R
e2
T ] =

EP [Λ1,TΛ2,T ]− EP [Λ1,T ]EP [Λ2,T ]√
EP
[
(Λ1,T )

2
]
− EP [Λ1,T ]

2

√
EP
[
(Λ2,T )

2
]
− EP [Λ2,T ]

2

,
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where RelT and Λl,T denote the stock return and future value of the equity of firm l at time
T , respectively. The computation formula for the cross moment between Λ1,T and Λ2,T is also
found in Appendix D. In contrast to equity risk premiums and equity volatility, the stock
return correlation is irrelevant to investor risk aversion and probability weighting because the
equity values of the two firms affected by investor’s characteristics cancel out the correlation.
Again, stock returns Re1T and Re2T are driven by only common factor W (τt), but are nonlinear.

Next, consider the gross rate of return on a portfolio consisting of a weighted sum of every
stocks in the market, defined as

RmT :=

L∑
l=1

wlR
el
T , (22)

where wl is the market portfolio weight of firm l. Hereafter, the portfolio defined above is called
the stock index. The equity risk premium, volatility, and other characteristics of the stock index
are defined in a similar manner to those of individual stocks. In the simulation, I also compute
CAPM betas and Jensen’s alphas for individual stocks by utilizing the quantities defined above.
The equity premium puzzle can be summarized as the historical average of excess returns on
the stock index being much higher than model-implied equity risk premium EP[RmT ]−RfT with
reasonable parameters.

3 Calibration and Simulation

This section presents the calibration procedure for the macroeconomic and firm-specific pa-
rameters of the model and the simulation results. The simulation addresses widely recognized
asset pricing puzzles, while also identifying the anomalous patterns observed among financially
distressed stocks. The estimates and graphs are annualized as T = 1 unless otherwise stated.

3.1 Consumption Growth Rate Distributions

Consider three stochastic processes for describing the dynamics of objective consumption growth
rate Rt. One is the Brownian motion (BM) with mean parameter µ and volatility parameter σ.
BM is regarded as the benchmark model in this simulation, because it is normally distributed
and business time always coincides with calendar time, that is, τt = t for all t ≥ 0. The
other two models are the variance gamma process (VG) and normal inverse Gaussian process
(NIG) with zero skewness. The VG proposed by Madan and Seneta (1990) is a subordinated
Brownian motion by the gamma process with parameter κ. The gamma process used as the
business time of VG has independently Gamma distributed increments. A sample path of the
gamma process is shown in Panel A of Figure 1. VG is a pure jump process without any
continuous components, and it has a finite variation at any time, with infinite but relatively
low activity of small jumps. On the other hand, the NIG introduced by Barndorff-Nielsen
(1997) is a subordinated Brownian motion by the inverse Gaussian process with parameter κ.
The increments of the inverse Gaussian process are inverse Gaussian distributed. See Panel B
of Figure 1 for a sample path of the inverse Gaussian process. NIG is also a pure jump Lévy
process and has infinite variation at any time, with high activity of small jumps. Obviously,
both VG and NIG are non-Gaussian processes. Parameter κ generates excess kurtosis of the
objective consumption growth rate distribution. Table A.2 exhibits the characteristic exponents
and cumulants of the three stochastic processes, BM, VG, and NIG. See also Table A.1 for the
models of the business time built in VG and NIG.

For calibrating model parameters, I use annual data on real consumption expenditure in
the U.S. from Shiller (2017). The sample period is from 1889 to 2009. The sample mean of the
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log consumption growth rates is 2.00%, standard deviation 3.52%, skewness -0.3564, and excess
kurtosis 1.1911, as shown in the first row in Panel B of Table 1. These statistics allow calibrating
the parameters in the consumption growth rate process: µ, σ, and κ. These parameters are
determined by matching the model-generated mean, standard deviation, and excess kurtosis
with the corresponding sample statistics. That is, µ = 0.0200, σ =0.0352, and κ = 1.1911/3.
Next, I set the time preference parameter δ = 0.01 and risk aversion parameter γ = 4. This
setting follows macro-finance literature. To explore the cause of asset pricing puzzles, I postulate
three types of representative investors with different subjective parameters. That is, ω = -0.12,
0, or 0.12, each of which implies the investor’s perspective toward consumption is deteriorating,
neutral, or improving against a rapidly changing economy, respectively. Panel A of Table 1
summarizes the calibration result for the macroeconomic parameters.

Panel B of Table 1 describes the fundamental statistics of the consumption growth rate
distributions. As expected, the benchmark model, BM, does not generate any skewness or
excess kurtosis for all distributions. The risk-neutral mean in BM is less than the objective
mean. According to Table A.3, the difference between the risk-neutral and objective means is
equal to −σ2γ. This implies it is negative and larger when aggregate consumption is highly
volatile or the investor is strongly risk averse. The level of the standard deviation is invariant
for any probability measures. These results are also well known in macro-finance literature.

Both VG and NIG accomplish perfect matching for the kurtosis of the objective consumption
growth rate distribution with the historical one, as well as the mean and standard deviation.
They can thus capture non-normality of the consumption growth rate distribution. On the
other hand, objective skewness equals zero and does not match the historical one because of a
no skew parameter in the models.

I then turn my attention to the subjective distributions of VG and NIG. The subjective
parameter ω in VG controls only standard deviation, while the parameter in NIG distorts kur-
tosis as well as standard deviation. A negative value of the subjective parameter increases these
statistics, and vice versa. However, an impact of the subjective parameter on the subjective
distributions is not significant. For example, when ω = 0.12 in VG, the subjective standard de-
viation equals 3.91%, in contrast with the objective standard deviation of 3.52%. The subjective
mean is unchanged, and subjective skewness remains zero. For a more intuitive understand-
ing, Figure 2 plots the probability weighting function defined in (4). The function draws three
types of graphs: inverse S-shaped curve, straight line, or S-shaped curve. The inverse S-shaped
curve, which is the case of ω = -0.12, is the more frequently observed pattern in past empirical
research, particularly in behavioral economics. This shape implies the investor with ω = -0.12
overweighs his/her subjective probability on infrequent events. Conversely, the investor with
ω = 0.12 tends to underestimate tail events, because subjective standard deviation and kurtosis
are relatively small. Note that the inverse S-shaped curve in Figure 2 is moderate in comparison
with the standard illustration of probability weighting functions in textbooks.

Finally, I discuss the risk-neutral distributions in VG and NIG. They are negatively skewed
due to investor risk aversion γ and also depend on subjective parameter ω. The level of the
risk-neutral mean is smaller than the objective one. An impact of the subjective parameter on
the risk-neutral distribution is significantly larger in the case of ω = -0.12 than in the other
cases. The risk-neutral standard deviation describes the same pattern as the subjective one in
the change of the subjective parameter. That is, a negative value of the subjective parameter
increases the risk-neutral standard deviation more sharply. The investor with ω = -0.12 has
a more negatively skewed risk-neutral distribution than the investor with ω = 0.12. The risk-
neutral kurtosis in VG with ω = -0.12 is relatively larger than in VG with ω = 0.12. However,
NIG shows a contrary relation to VG.
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Table 1: Consumption Growth Rate Distributions
Panel A reports the macroeconomic parameters used for all the simulation. µ and σ are parameters denoting

mean and standard deviation of the objective consumption growth rate distribution. κ is a parameter for VG

and NIG generating kurtosis of the distribution. These parameters are calibrated to the historical consumption

data in the U.S. from Shiller (2017) over the sample period from 1889 to 2009. δ and γ are time preference and

risk aversion parameters, respectively. ω is subjective parameter determining investor’s probability weighting.

Panel B reports summary statistics of the historical, objective, subjective, and risk-neutral distributions of

annual consumption growth rates.

Panel A: Macroeconomic parameters
µ σ κ δ γ ω

0.0200 0.0352 0.3970 0.0100 4 -0.12, 0, 0.12

Panel B: Consumption growth rate distributions
Probability Mean StdDev Skewness Kurtosis

Historical 0.0200 0.0352 -0.3564 1.1911

BM Objective 0.0200 0.0352 0.0000 0.0000

Subjective 0.0200 0.0352 0.0000 0.0000
Risk-neutral 0.0150 0.0352 0.0000 0.0000

VG Objective 0.0200 0.0352 0.0000 1.1911

ω = -0.12 Subjective 0.0200 0.0391 0.0000 1.1911
Risk-neutral 0.0138 0.0394 -0.1852 1.2140

ω = 0 Subjective 0.0200 0.0352 0.0000 1.1911
Risk-neutral 0.0150 0.0354 -0.1668 1.2096

ω = 0.12 Subjective 0.0200 0.0322 0.0000 1.1911
Risk-neutral 0.0158 0.0324 -0.1530 1.2067

NIG Objective 0.0200 0.0352 0.0000 1.1911

ω = -0.12 Subjective 0.0200 0.0397 0.0000 1.5141
Risk-neutral 0.0136 0.0452 -0.1813 0.9837

ω = 0 Subjective 0.0200 0.0352 0.0000 1.1911
Risk-neutral 0.0150 0.0354 -0.1671 1.2238

ω = 0.12 Subjective 0.0200 0.0324 0.0000 1.0135
Risk-neutral 0.0157 0.0301 -0.1583 1.4248
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3.2 Interest Rate

Table 2 exhibits historical and model-implied one-year interest rates. The historical one-year
interest rate, 2.75%, is the average value of the historical data on real one-year interest rates
from Shiller (2017) over the sample period 1871–2012. The model-implied interest rate by BM,
7.99%, is much higher than the historical interest rate. This incompatibility is called the risk-
free rate puzzle. The steady-state interest rate (SSIR), δ + γµ, equals 8.98% for all models.
The absolute value of the precautionary savings term (PST) in BM, 0.99%, is too small. Recall
that PST of BM takes the form −σ2γ2/2. To reconcile the risk-free rate puzzle, the absolute
value of PST is required to be over 6.00%. This implies that the standard deviation of the
consumption growth rate must be at least 8.65% for BM, but this value is unrealistically high.

Next, I discuss the simulation results of VG. The level of the model-implied interest rates
depends on the value of subjective parameter ω. Table 2 shows that the PST of VG seems not
to be monotonic in ω. Recall that PST is represented as −γω − L(γ2σ2/2 − γω). Addition-
ally, Lemma A.2 claims the Laplace exponent of business time, L(θ), is an increasing concave
function, taking nonnegative values on the positive region. For ω = -0.12, the first term of
PST, −γω, is positive, whereas the second term, −L(γ2σ2/2 − γω), takes a negative value.
Summing up the two terms, the value of the corresponding PST equals -6.48%. As a result, the
model-implied interest rate in VG is 2.50%, which is close to the historical average of interest
rates. Therefore, the investor’s tendency to worry about infrequent events has the possibility
to reconcile the risk-free rate puzzle.

As ω = 0.12 under VG, the absolute value of PST is somewhat large, because the first term
of PST takes a negative large value despite the positivity of the second term. However, the
model-implied interest rate, 4.08%, is still too high in comparison with the historical interest
rate. The interest rate in VG with ω = 0 has the same value as in BM. If one calibrates the level
of subjective parameter ω such that the model-implied interest rate is fixed at the historical
average, 2.75%, the subjective parameter for VG is obtained as ω = -0.1174. The model with
calibrated parameter ω = -0.1174 produces analogous simulation results3 to the model with
ω =-0.12 shown below.

The model-implied interest rates by NIG are similar to by VG. The interest rate under NIG
with ω = -0.12, 1.99%, is smaller than for VG, 2.50%, due to the larger absolute value of the
second term of PST in NIG compared to VG. This is owing to the model-specific characteristics
of the Laplace exponent L(θ). Calibrating the level of the subjective parameter so that the
interest rate in NIG is fixed at the historical interest rate, the calibrated parameter is obtained
as ω = -0.1129.

As an aspect of the risk-free rate puzzle, Weil (1989) documents that increasing risk aversion
leads to a higher interest rate in the standard consumption-based model. Panels A and B of
Figure 3 plot interest rates across relative risk aversion γ under VG and NIG, respectively,
where the models with ω = 0 cannot circumvent the puzzle. By contrast, when ω = -0.12, the
interest rates are decreasing for risk aversion, such that γ > 3 in both of the two models. This
result is evidence that mild overweighting of probability on tail events solves the risk-free rate
puzzle.

3.3 Credit Spreads

Consider six credit rating categories: AAA, AA, A, BBB, BB, and B. I postulate representative
firms in each rating category, with the corresponding firm-specific profiles listed in Panel A of
Table 3. The firms are indexed by l = AAA , . . . , B. The number of observations, debt ratio,
and asset volatility in Panel A are taken from Table 7 in Schaefer and Strebulaev (2008).

3The simulation results in VG with calibrated parameter ω = -0.1174 are available upon request.
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Table 2: 1-Year Interest Rate
The table exhibits historical and model-implied one-year interest rates. The historical interest rate is the

historical average of real one-year interest rates based on the 1871–2012 sample data from Shiller (2017). SSIR

stands for the steady-state interest rate and PST stands for the precautionary savings term.

Interest rate SSIR PST
Historical 0.0275

BM 0.0799 0.0898 -0.0099

VG ω = -0.12 0.0250 0.0898 -0.0648

ω = 0 0.0799 -0.0099

ω = 0.12 0.0408 -0.0490

NIG ω = -0.12 0.0199 0.0898 -0.0699

ω = 0 0.0799 -0.0099

ω = 0.12 0.0427 -0.0471

They estimate these quantities from historical data from 1996 to 2003. The total number of
observations is 63,639 and the largest rating category is the A-rated, with 28,044 observations.
As shown in Panel A, the debt ratio, defined as the face amount of a firm’s debt divided by the
firm value, F/V0, is increasing as a result of the deterioration of credit rating. The lowest debt
ratio is 10% for the AAA-rated firm, while the highest debt ratio is 66% for the B-rated firm.
The values of asset volatility of the firms are approximately the same, ranging between 21%
and 23%, except for the B-rated firm, whose asset volatility is 28%. The cumulative 10-year
default probabilities in Panel A are based on Moody’s data from 1970 to 1998 as reported by
Keenan et al. (2000), which have been used for past credit market analyses (e.g., by Cremers
et al., 2008). The quantities stated above are regarded as given sample data for calibration and
simulation.

I calibrate firm-specific parameters νl and ζl for each firm. The value of leverage parameter
νl defined in (11) is obtained by the relation that asset volatility σz,l is equal to νl times
standard deviation of consumption growth rate σ = 0.0352. Next, for a calibrated parameter
νl, I adjust the level of the cash flow drift term ζl in (11), so that the model-implied 10-year
default probability in (17) with T = 10 matches the sample default probability. The calibration
succeeds in fitting all default probabilities together in all the three models, BM, VG, and NIG.
The calibration results are exhibited in Panel A of Table 3. The calibrated cash flow drift terms
not only for the BBB and BB-rated firms, but also for the AAA-rated firm, are negative. It
appears reasonable that the lower rated firms have negative expected growth rates of the cash
flow. The reason why the cash flow drift term of the highest rated firm is negative is as follows.
The debt ratio of the AAA-rated firm is sufficiently low, at 10%. This implies the default
threshold is far away from the current level of firm value. However, because the sample default
probability is not zero, 0.77%, the cash flow drift must be negative to match the probability.

Panel B of Table 3 presents historical and model-implied 10-year credit spreads across credit
rating categories. Historical credit spreads are taken from Cremers et al. (2008), who estimate
them from a 1983–2002 sample of credit spread data used for the Lehman indexes. They range
from 66 (AAA) to 548 basis points (B). When computing the model-implied credit spreads,
recovery rate is set to 51.3% for all rating categories, ε = 0.513 in (16), which is taken from
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Moody’s report by Keenan et al. (2000).
The benchmark model, BM, brings the 10-year credit spread levels from 14 (AAA) to 602

basis points (B). These are underestimated relative to the historical credit spreads, except for
the B-rated firm. Particularly, BM generates low credit spreads for investment-grade firms. For
example, the 10-year credit spread of the A-rated firm in BM equals 26 basis points, whereas the
historical spread is 115 basis points. It is a challenging task to reconcile the model-implied credit
spreads with the historically observed ones, especially for high rated firms. This incompatibility
is named the credit spread puzzle by Amato and Remolana (2003).

I then focus on the simulation results for VG and NIG. The discrepancy between historical
and model-implied credit spreads for investment-grade firms are somewhat improved under VG
with ω = -0.12. For instance, VG generates the 10-year credit spread of 51 basis points for
the A-rated firm. Higher improvement is shown by the NIG with ω = -0.12. The model-
implied credit spread of the A-rated firm by NIG equals 56 basis points. The mitigation of
the discrepancy is caused by the negative skewness of the risk-neutral consumption growth rate
distribution. This implies that the risk-averse investor with ω = -0.12 is very cautious towards
the downward jumps of firm values when evaluating corporate bonds. A number of past studies
have exogenously incorporated downward jump risk premium into credit market analyses to
make the distribution of firm’s growth rate negatively skewed, but they follow only infrequent
and large jumps. On the other hand, the proposed model introduces frequent small jumps into
the aggregate consumption and generates negative skewness endogenously.

However, the difference is still large. Several empirical studies have documented the presence
of unrelated factors to firms’ default in credit spreads. For example, Elton et al. (2001) point
out the effect of a state tax on corporate bond coupons, which is not levied on Treasury bond
coupons. They demonstrate that the tax effect is increasing credit spreads for investment-grade
firms. Another plausible factor is the liquidity effect. Generally, corporate bond markets are
less liquid than government ones. Chen et al. (2007) conclude that liquidity is priced in yield
spreads of corporate bonds and explains as much as half of the cross-sectional variation in
credit spread changes. However, such an effect is outside the scope of this paper. In contrast
to investment-grade firms, the model-implied 10-year credit spreads for the B-rated firm are
overestimated relative to historical spreads. This is also controversial.

3.4 Non-Distressed Stocks

3.4.1 Equity Risk Premium and Volatility across Rating Categories

Table 4 describes the equity risk premiums and equity volatility of the stock index, the repre-
sentative firms in each credit rating category, and a virtual non-defaultable firm. The first row
exhibits market portfolio weights, defined as the ratio of a firm’s equity value to the total stock
market value, calculated based on Table 7 in Schaefer and Strebulaev (2008). The historical
equity premium of 5.2% and equity volatility of 18.2% on the stock index are estimated from
annual returns on S&P500, as obtained from Shiller’s (2017) data from 1871 to 2011. The
historical equity volatility of the representative firms ranging from 25% (AAA) to 61% (B) are
taken from Schaefer and Strebulaev (2008), whereas their equity risk premiums are unfortu-
nately not available. For the simulation, I set the dividend payout ratio equal to 20% for any
firms, that is, ηl = 0.20 for all l. The model-implied equity risk premiums and equity volatility
of each firm are calculated by (20) and (21), while those of the stock index are based on (22).
The non-defaultable firm is a virtual firm with debt ratio zero and assumed to have the same
asset volatility, 22%, as the AAA-rated firm and a cash flow drift term of 2% equal to the
average growth rate of historical consumption.

I first discuss the benchmark model, BM. The equity risk premium of the non-defaultable
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Table 3: Firm-Specific Parameters and Credit Spreads
In Panel A, Number of observations, Debt ratio, and Asset volatility are taken from Table 7 in Schaefer and

Strebulaev (2008), and the 10-year default probability for each rating category is based on Moody’s report by

Keenan et al. (2000) from 1970 to 1998. Firm-specific parameters νl and ζl for rated firms indexed by l = AAA,

..., B denote leverage and cash flow drift parameters, respectively. These parameters are in turn calibrated to

the asset volatility and 10-year default probability. Panel B reports historical and model-implied 10-year credit

spreads of corporate bonds, whose unit are basis points. The historical credit spreads are taken from Cremers

et al. (2008), who estimate them from the 1983–2002 sample data used for the Lehman indexes.

Panel A: Firm-specific parameters
Total AAA AA A BBB BB B

Number of observations 63,639 1,318 6,713 28,044 22,183 4,548 833
Debt ratio 0.34 0.10 0.21 0.32 0.37 0.50 0.66
Asset volatility 0.22 0.22 0.22 0.21 0.22 0.23 0.28
10-year default probability 0.77% 0.99% 1.55% 4.39% 20.63% 43.91%

Firm-specific parameters
νl 6.256 6.256 5.971 6.256 6.540 7.962
ζl BM -0.062 0.006 0.029 0.019 -0.010 -0.028

VG -0.059 0.008 0.030 0.019 -0.010 -0.028
NIG -0.059 0.008 0.030 0.019 -0.010 -0.028

Panel B: 10-year credit spreads (basis points)
AAA AA A BBB BB B

Historical 66 92 115 171 332 548

BM 14 18 26 66 268 602

VG ω = -0.12 32 38 51 106 331 662

ω = 0 17 21 30 71 275 603

ω = 0.12 9 12 18 49 233 560

NIG ω = -0.12 36 42 56 112 339 669

ω = 0 17 21 30 72 275 603

ω = 0.12 9 12 19 51 237 564
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firm equals 3.4%. If all firms were non-defaultable, which is standard in past asset pricing
literature, the equity premium of the stock index would be 3.4%. This hypothetical situation can
be identified with the classical Lucas tree model, and the model-implied equity premium seems
too low relative to the historical average of excess returns on S&P500, 5.2%. The discrepancy
stated above is called the equity premium puzzle, as reported by Mehra and Prescott (1985).

As shown in the simulation result of BM, by incorporating default risk into an asset pricing
model, the model generates higher equity risk premiums for individual firms. The level of
the equity premiums ranges from 3.7% (AAA) to 11.8% (B). The worse is the credit rating,
the more increases the equity risk premium. This result essentially embodies MM proposition
II (Modigliani & Miller, 1958) that the expected return on equity increases as the debt to
equity ratio increases. As a result of the higher individual equity premiums, the equity risk
premium of the stock index being capitalization-weighted equals 5.0%, which is close to the
level of the historical equity risk premium, 5.2% and higher than the equity risk premium of
the non-defaultable firm, 3.4%, the average growth rate of historical consumption, 2.0%, and the
weighted average of the cash flow drifts of the representative firms, 1.8%. This result indicates
default risk has the potential to reconcile the equity premium puzzle.

Going back to the non-defaultable firm in BM, the equity volatility of the non-defaultable
firm is 24.7%, while the asset volatility is set to 22% as stated above. Recall the asset volatility
of a firm is identical to the volatility of its dividend payment in the framework. Shiller (1981)
documents that stock price fluctuations observed on markets are excessive relative to dividend
payment fluctuations. This is called the excess volatility puzzle. The non-defaultable stock in
the simulation ends up reproducing this puzzle. In fact, the level of the equity volatility on
the non-defaultable firm is close to asset volatility. Furthermore, if the dividend payout ratio η
were 100%, they would take the same percentage.

Incorporating default risk into the benchmark model causes the different levels of equity
volatility across credit rating categories to range from 27.3% (AAA) to 89.3% (B). Table 4 shows
that model-implied equity volatility is increasing with the deterioration of the credit rating
consistent with the historical equity volatility. As expected, equity risk premiums are higher for
higher equity volatility, and the level of the model-implied equity volatility is much larger than
the asset volatility listed in Panel A of Table 3. The financial leverage effect naturally described
in a structural credit model thus makes stock prices highly volatile. Therefore, introducing
default risk into the model can reconcile the excess volatility puzzle.

In BM, the equity volatility of each firm has nearly the same level as the historical equity
volatility, whereas the stock index volatility, 36.3%, is obviously higher than the historical
volatility of S&P500, 18.2%. This inconsistency is attributed to two reasons. One is that the
economy in this framework is driven by only one common factor, W (τt), and all firms do not
have any idiosyncratic driving factors for simplicity. As a result, the individual stock returns
generated by the model are highly correlated with each other. Model-implied correlations among
them take values above 0.992. Due to the extremely high correlations, the diversification effect
on an equity portfolio, which could be expected to reduce its volatility, scarcely works. The
other reason is the difference of sample firms between S&P500 and this examination. The
number of observations in the simulation is 63,639, as shown in Panel A of Table 3, while
S&P500 is, of course, based on the market capitalizations of 500 large companies listed on
NYSE or NASDAQ.

Next, I discuss the simulation results under VG and NIG. Table 4 reveals that the impact
of subjective parameter ω on equity risk premiums and equity volatility is not significant. For
example, the non-defaultable firm has an equity risk premium between 3.2% and 3.4% and
equity volatility between 23.9% and 25.2%. Roughly, they are the same levels as those of the
non-defaultable firm in BM. Therefore, even if the investor has probability weighting when
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evaluating stock prices, the stock returns are far from the observational evidence.
Focusing on credit rated firms in VG and NIG, the level of the equity risk premiums ranges

from 3.5% (AAA in VG or NIG with ω = 0.12) to 12.3% (B in VG or NIG with ω = 0.12),
and the level of the equity volatility ranges from 26.5% (AAA in NIG with ω = -0.12) to 91.5%
(B in NIG with ω = 0). Consequently, the equity risk premium of the stock index takes a
value between 4.7% and 5.0%, while stock index volatility ranges from 35.4% to 37.0%. These
estimates depict similar patterns to those in the benchmark model, BM. This result indicates
that an asset pricing model with default risk separate from investor’s probability weighting has
the potential to resolve the equity premium and excess volatility puzzles. It is worth recalling
that the investor with negative subjective parameter cancels out the risk-free rate puzzle. In
conclusion, the combination of default risk and probability weighting on rare events is expected
to provide an answer to the widely recognized asset pricing puzzles in financial economics.
However, subjective parameter ω appears to hardly affect stock returns, but this intuition is
not correct in financially distressed stocks (see Section 3.5 for details).
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3.4.2 Simulation Results across Firm-Specific Factors

Here, I simulate the cross-sectional relationship between stock returns and firm-specific factors.
Recall that the model has four firm-specific factors: cash flow drift term ζ, dividend payout ratio
η, asset volatility σz, and debt ratio F/V0. Assume a benchmark firm with ζ = 1%, η = 20%,
σz = 22%, and F/V0 = 30% in this simulation. Moreover, suppose an economy in which the
consumption growth rate process follows VG and the representative investor overweighs his/her
probability on rare events (ω = -0.12). Then, I compute five estimates relevant to stock return
performance measurement: equity risk premium, equity volatility, logarithm of price-dividend
ratio, CAPM beta, and Jensen’s alpha across the changes of each firm-specific factor.

Table 5 describes the simulation results. First, Panels A and B exhibit the estimates in
terms of the variation of cash flow drift term and dividend payout ratio, respectively. The
impact of these factors on the equity risk premiums and volatility appears to be subtle, despite
varying the log price-dividend ratios. The levels of the CAPM betas range from 0.957 to 0.966
in Panel A and from 0.955 to 0.964 in Panel B, while Jensen’s alphas in both Panels A and B are
approximately zero. However, the conclusion that cash flow drift terms are entirely irrelevant
to stock returns is incorrect. As shown in Section 3.5, a severe deterioration of the expected
cash flow growth rate significantly affects stock returns.

Second, I discuss the simulation result in Panel C, which shows the impact of asset volatility
on the stock return performance measurement. As expected, the higher asset volatility is, the
larger are both equity premium and equity volatility. This result is relevant to the CAPM beta
generated by the model increasing under asset volatility. The level of the equity premiums
ranges from 3.3% to 6.2%, while the CAPM beta ranges from 0.594 to 1.351. Jensen’s alpha is
slightly decreasing under asset volatility.

Finally, Panel D exhibits the estimates across debt ratio. The higher the debt ratio is,
the larger both equity premium and equity volatility are. This is the financial leverage effect
claimed by the MM proposition. Similarly to Panel C, stocks with higher debt ratio have higher
CAPM betas, whereas Jensen’s alphas are always around zero. Precisely, the equity premium
takes a value between 3.8% and 6.7% and the level of the CAPM betas ranges from 0.749 to
1.338.

In conclusion, from Table 5, increasing asset volatility or debt ratio earns higher expected
stock returns and equity volatility. This is because higher market risk is embedded in such
stocks. Moreover, the stock returns seem to not involve other risk components such as small
capital or value factors in the Fama-French three-factor model (Fama & French, 1993). Basi-
cally, the simulation results are in line with the seminal Modigliani and Miller theory that as the
proportion of debt in the firm’s capital structure increases, its equity return to the shareholder
increases. Additionally, they reveal that the price-dividend ratio is not necessarily an immedi-
ate clue to predict future stock returns in the framework. However, stock return predictability
still remains as a puzzle.

3.5 Distressed Stocks

3.5.1 Observational Evidence

Dichev (1998), Griffin and Lemmon (2002), Campbell et al. (2008), Avramov et al (2009), and
others recognize the existence of the cross-sectional relationship that average excess returns
on financially distressed stocks are decreasing with the deterioration of default risk. This
observational evidence seems to be anomalous, because it means that investors pay premiums
for stocks with higher default possibility. Griffin and Lemmon (2002) conclude that such stocks
are mispriced, and Avramov et al. (2009) think of this relation as a type of asset pricing puzzle.
Campbell et al. (2008) argue three possible reconciliations for the anomalous underperformance
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Table 5: Stock Returns across Firm-Specific Factors
The table reports the simulation results, including equity risk premiums, equity volatility, log price-dividend

ratios, CAPM betas, and Jensen’s alphas. This simulation postulates a benchmark firm that has a cash flow

drift term of 1%, asset volatility of 22%, debt ratio of 30%, and dividend payout ratio of 20%. Panels A–D

exhibit the results for the firm with changing in level of each firm-specific factor.

Panel A: Cash flow drift term
Cash flow drift term -0.01 0.00 0.01 0.02 0.03
Equity premium 0.049 0.049 0.048 0.048 0.048
Equity vol 0.343 0.342 0.341 0.340 0.340
Log PD ratio 4.351 4.625 4.992 5.562 6.948
CAPM beta 0.966 0.964 0.962 0.959 0.957
Jensen’s alpha 0.000 0.000 0.000 0.000 0.000

Panel B: Dividend payout ratio
Dividend payout ratio 0.10 0.20 0.30 0.40 0.50
Equity premium 0.049 0.048 0.048 0.048 0.048
Equity vol 0.342 0.341 0.340 0.340 0.339
Log PD ratio 5.682 4.992 4.590 4.305 4.085
CAPM beta 0.964 0.962 0.959 0.957 0.955
Jensen’s alpha 0.000 0.000 0.000 0.000 0.000

Panel C: Asset volatility
Asset volatility 0.14 0.18 0.22 0.26 0.30
Equity premium 0.033 0.041 0.048 0.056 0.062
Equity vol 0.211 0.275 0.341 0.410 0.481
Log PD ratio 4.834 4.871 4.992 5.234 5.712
CAPM beta 0.594 0.775 0.962 1.154 1.351
Jansen’s alpha 0.003 0.002 0.000 -0.002 -0.006

Panel D: Debt ratio
Debt ratio 0.10 0.20 0.30 0.40 0.50
Equity premium 0.038 0.042 0.048 0.056 0.067
Equity vol 0.266 0.299 0.341 0.397 0.475
Log PD ratio 5.242 5.125 4.992 4.840 4.660
CAPM beta 0.749 0.842 0.962 1.120 1.338
Jensen’s alpha 0.000 0.000 0.000 0.000 -0.001
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of distressed stocks: (i) unexpected events in observed period, (ii) valuation errors by irrational
investors, and (iii) rational valuation to hold them despite low equity premiums. However,
Campbell et al. (2008) do not construct any asset pricing models to explain the anomaly. To
the best of my knowledge, Garlappi and Yan’s (2011) is only the study to provide a theoretical
reconciliation for it. Specifically, Garlappi and Yan (2011) develop an equity valuation model
based on a partial equilibrium approach, which is explicitly incorporated with financial leverage.
They prove that the presence of potential shareholder recovery upon financial distress causes
a cross-sectional anomaly. This section thus provides another theoretical explanation based on
the consumption-based asset pricing approach.

Another topic about distressed stocks is correlation structure. Financially distressed stocks
are known to be highly volatile and less correlated with a market portfolio. However, as noted by
Campbell et al. (2008), the high volatility cannot fully diversify at a portfolio level constructed
by distressed stocks, and there exists a degree of covariation in them. This empirical evidence
indicates the high volatility of distressed stocks is caused not only by idiosyncratic firm-level
risk factors, but also by a latent common factor driving them. Campbell et al. (2008) and
Avramov et al. (2009) also report that distressed stocks have high CAPM betas and negative
Jensen’s alphas. The analysis in this paper explores the possibility to reproduce this apparently
inconsistent phenomenon.

In sum, the purpose of this subsection is to offer a new perspective for understanding the
observational evidence mentioned above. The model is explicitly incorporated with the default
risk of individual firms and probability weighting of the representative investor. This modeling
is expected to provide a consistent and unified reconciliation to the anomalous patterns in
distressed stocks.

3.5.2 Simulation Results

I postulate a benchmark firm in financial distress as follows. Cash flow drift term ζ is set to
-0.2. That is, the cash flow generated by the firm is expected to decline 20% per year. Asset
volatility σz is set to 21.12% (ν = 6) and debt ratio F/V0 to 100%. The latter assumption
means that the debt level is at insolvency and the intrinsic value of the equity is worthless,
while it might have a positive time value for the equity. The benchmark distressed firm does
not pay dividends to shareholders at any time, η = 0.

Panel A of Table 6 describes the simulation results for the distressed stock across debt ratios.
In this simulation, the higher the debt ratio of the firm is, the worse the credit risk. First, I
focus on the simulation result in benchmark model BM. The equity risk premium ranging from
20.5% to 47.7% is extremely high and increasing with the change of debt ratio. This result
is incompatible with the empirical observation above, whereas it accords with the standard
theory of asset pricing in that assets with relatively high risk are expected to earn high average
returns.

Second, I discuss the simulation results in VG and NIG. Panel A shows that equity premium
on the distressed stock are decreasing with the change of debt ratio when the investor has a
negative value of subjective parameter, ω = -0.12. Therefore, the overweighting probability
on tail events induces the anomalously cross-sectional relationship reported in past empirical
analyses. Surprisingly, the models predict negative equity premiums for a firm falling into
excessive liabilities. Indeed, VG and NIG generate negative premiums ranging from -0.2% (VG
with ω = -0.12 and debt ratio of 1.2) to -8.8% (NIG with ω = -0.12 and debt ratio of 1.2).
By contrast, when ω = 0 or 0.12, the cross-sections between equity premiums and debt ratios
have a positive relationship. Neither underweighting probability on rare events nor non-biased
subjective probability reproduce the anomalous pattern.

It is worth noting that the correlation between returns on the distressed stock and the stock
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index, which ranges between 0.924 and 0.439 in BM, is weakening with the increasing debt
ratio. On the other hand, correlations among distressed stocks are close to one. For instance,
the correlation between the stock returns of two firms with debt ratios of 1.0 and 1.1 equals 0.935.
The simulation result is thus consistent with the observational evidence stated by Campbell et
al. (2008), which is caused by optionality of the future values of equity. Recall that an equity
value can be regarded as the price of a power call option written on aggregate consumption. A
call option price is an increasing and convex function of the underlying asset price. Particularly,
distressed stocks can be thought of as near-the-money call options. Distressed stocks staying
near a position on the convex curve move together via consumption fluctuations. That is,
they have near option gammas. Consequently, they are highly correlated with each other.
By contrast, stocks issued by investment-grade firms can be thought of as deep in-the-money
call options. Because of nonlinearity, distressed stocks are weakly correlated with the stock
index, in which investment-grade firms account for the majority. That is, a distressed stock
has a different option gamma from the stock index. Seemingly paradoxical observations of the
correlation structure are compatible in this model.

Panel A also shows that the CAPM betas of distressed stocks are high despite weak corre-
lations with the stock index. Moreover, Jensen’s alphas take negative values for ω = -0.12 or
0, while they are otherwise positive. The simulation results are consistent with observational
evidence. In the framework, applying CAPM to distressed stocks means a forcible linear re-
gression of their returns against the stock index despite a nonlinear relationship. This is the
reason why CAPM betas are high and Jensen’s alphas are nonzero.

Panel B presents the simulation results for the distressed stock across cash flow drift. In
this simulation, the more negative the cash flow drift term is, the worse the credit risk. As a
rule, the simulation results in Panel B are analogous to those in Panel A. Both VG and NIG
with ω = -0.12 reconcile the anomalous patterns observed in distressed stocks. The two models
reproduce the positive cross-sectional relation between cash flow drifts and equity premiums.
They also predict negative Jensen’s alphas. All results display high volatility and large CAPM,
as well as a correlation structure consistent with the empirical observation. By contrast, when
ω = 0 or 0.12, the equity risk premium is increasing in deterioration of the cash flow drift.
Jensen’s alphas take positive values for ω = 0.12.

In conclusion, the simulation shows that, if the representative investor had more probability
weighting on infrequent events, the seemingly anomalous patterns in financially distressed stocks
might be rational for him/her. That is, distressed stocks are not mispriced. The simulation
results strongly support Campbell et al.’s (2008) third possible reconciliation for the distressed
equity premium puzzle: (iii) rational valuation to hold financially distressed stocks despite
low equity premiums. The model also succeeds in offering a theoretical explanation for the
correlation structure among distressed stocks.

3.5.3 Discussion

In the following, I discuss why the model can generate the anomalous cross-sectional relationship
between default risk and equity risk premium. To theoretically understand the relationship,
there are two key points: one is the shape of the projection of the pricing kernel onto the
consumption growth rate and the other the interpretation of an equity value with default risk
as a power call option written on consumption. First, the discussion focuses on the projection
of the pricing kernel onto the consumption growth rate, defined as

dQ
dP

(Rt < x) =
dPS

dP
× dQ
dPS (Rt < x), (23)
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which is the ratio of the risk-neutral density function of the log consumption growth rate to
the objective density function. It is equivalent to the probability weighting function times the
ratio of the risk-neutral density function to the subjective density function. The projection of
the pricing kernel (23) can be easily computed by Lévy’s inversion formula of the characteristic
function (6), with exponents (9) and (7). Panels A and B in Figure 4 plot the projections
under VG and NIG, respectively. When ω = 0, they are monotonically decreasing with the
consumption growth rate. This shape accords with standard asset pricing theory, for instance,
Lucas (1978). However, several empirical studies, such as Ait-Sahalia and Lo (1998), Jackw-
erth (2000), and Rosenberg and Engle (2002), have demonstrated that pricing kernels are not
monotonically decreasing, but have some increasing regions. Furthermore, Bakshi et al. (2010)
assert that empirical pricing kernels observed on the U.S. stock market are U-shaped, being
compatible with ω = -0.12 in Figure 4. They also develop a general theory of U-shaped pricing
kernels linked with contingent claims. I cite the following theorem from Bakshi et al. (2010),
which is crucial to understand the simulation results.

Theorem 1 (Bakshi et al., 2010) If the economy supports a U-shaped pricing kernel, then
the following statements are true:

1. Expected returns of call options with strike prices above a certain level are decreasing in
the level of the strike prices.

2. There exists a strike price K such that call options with strikes higher than K have negative
expected returns.

3. The steeper the slope of the U-shaped pricing kernel in the increasing region, the smaller
are the expected returns of call options.

Under this framework, stocks issued by financially distressed firms are identical to near-the-
money or out-of-the-money call options written on ν-powered consumption. Following Theorem
1, if the pricing kernel is U-shaped, then the equity risk premiums of firms incurring debt above a
certain level are decreasing with the debt level, and could be negative in the range of deep out-of-
the-money. Moreover, Polkovnichenko and Zhao (2013) reveal the relation between probability
weighting functions and the slope of pricing kernels. The simulation results are consistent with
Polkovnichenko and Zhao’s (2013). However, all past studies treating U-shaped pricing kernels
have not addressed distressed stock markets, but option markets.

Next, I argue an economic interpretation of low equity risk premiums on distressed stocks.
Concretely, I consider why investors are overweighing probability on rare events, being willing
to purchase distressed stocks despite low expected returns. Barberis and Huang (2008) have
already answered an analogous question. They insist that such investors are willing to buy
a positively skewed security, for example, an IPO stock, although the security is expected to
earn a slightly positive or negative excess return. They call such a security a lottery. One can
also interpret distressed stocks as lotteries, because the payoff distributions of the distressed
stocks are positively skewed. Consequently, the investors with a pessimistic perspective on
consumption for a rapidly changing economy are willing to hold a distressed stock as lottery
and believe a rare event that the firm has dramatically improved or if a bail-out occurs. Recall
that the probability weighting with ω =-0.12 is not intensive, but moderate. In conclusion, the
aggregation of investors having mild overweighting of probability on infrequent events could
resolve the anomalous cross-sectional pattern.
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Table 6: Equity Risk Premium and Volatility on Distressed Stocks
The table reports the simulation results for financially distressed stocks, which provide correlations with the stock

index, equity risk premiums, equity volatility, CAPM betas, and Jensen’s alphas. This simulation postulates a

benchmark firm falling into financial distress, with cash flow drift term of -20%, asset volatility of 21.12%, debt

ratio of 100%, and no dividend payment. Panels A and B exhibit the results for the firm with changing levels

of debt ratio and cash flow drift term, respectively.

Panel A: Debt ratio
Debt ratio 0.8 0.9 1.0 1.1 1.2
BM Correlation 0.924 0.832 0.708 0.572 0.439

Equity premium 0.205 0.276 0.342 0.409 0.477
Equity vol 1.867 2.864 4.445 7.067 11.424
CAPM beta 4.746 6.555 8.667 11.114 13.797
Jensen’s alpha -0.031 -0.050 -0.089 -0.144 -0.210

VG Correlation 0.921 0.833 0.726 0.619 0.520

ω =-0.12 Equity premium 0.112 0.088 0.058 0.027 -0.002
Equity vol 1.799 2.705 3.948 5.621 7.809
CAPM beta 4.669 6.346 8.081 9.804 11.448
Jensen’s alpha -0.123 -0.231 -0.349 -0.466 -0.578

ω =0 Equity premium 0.216 0.306 0.393 0.479 0.565
Equity vol 2.055 3.376 5.379 8.341 12.575
CAPM beta 5.116 7.601 10.563 13.958 17.686
Jensen’s alpha -0.040 -0.073 -0.135 -0.218 -0.318

ω =0.12 Equity premium 0.319 0.501 0.735 0.996 1.275
Equity vol 2.152 3.749 6.475 10.881 17.677
CAPM beta 5.532 8.715 13.130 18.802 25.672
Jensen’s alpha 0.060 0.094 0.121 0.118 0.075

NIG Correlation 0.922 0.832 0.722 0.612 0.513

ω =-0.12 Equity premium 0.105 0.075 0.025 -0.031 -0.088
Equity vol 1.767 2.642 3.838 5.410 7.370
CAPM beta 4.607 6.220 7.841 9.367 10.698
Jensen’s alpha -0.128 -0.239 -0.370 -0.503 -0.628

ω =0 Equity premium 0.214 0.303 0.391 0.482 0.572
Equity vol 2.039 3.345 5.413 8.555 13.091
CAPM beta 5.081 7.527 10.569 14.157 18.161
Jensen’s alpha -0.039 -0.073 -0.137 -0.225 -0.335

ω =0.12 Equity premium 0.316 0.472 0.710 0.996 1.322
Equity vol 2.136 3.657 6.436 11.150 18.710
CAPM beta 5.485 8.482 12.955 19.022 26.759
Jensen’s alpha 0.058 0.074 0.102 0.103 0.066
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Panel B: Cash flow drift term
Cash flow drift term 0.0 -0.1 -0.2 -0.3 -0.4
BM Correlation 0.923 0.826 0.708 0.565 0.412

Equity premium 0.231 0.278 0.342 0.414 0.497
Equity vol 2.080 2.920 4.445 7.237 12.778
CAPM beta 5.283 6.637 8.667 11.244 14.482
Jensen’s alpha -0.031 -0.052 -0.089 -0.145 -0.224

VG Correlation 0.920 0.827 0.726 0.613 0.501

ω =-0.12 Equity premium 0.114 0.086 0.058 0.025 -0.009
Equity vol 1.988 2.754 3.948 5.714 8.362
CAPM beta 5.158 6.422 8.081 9.879 11.797
Jensen’s alpha -0.145 -0.237 -0.349 -0.471 -0.602

ω =0 Equity premium 0.246 0.310 0.393 0.485 0.586
Equity vol 2.319 3.451 5.379 8.527 13.728
CAPM beta 5.773 7.721 10.563 14.143 18.581
Jensen’s alpha -0.042 -0.076 -0.135 -0.221 -0.342

ω =0.12 Equity premium 0.345 0.511 0.735 1.010 1.342
Equity vol 2.419 3.846 6.475 11.157 19.602
CAPM beta 6.217 8.885 13.130 19.110 27.397
Jensen’s alpha 0.054 0.096 0.121 0.117 0.062

NIG Correlation 0.921 0.827 0.722 0.607 0.494

ω =-0.12 Equity premium 0.107 0.072 0.025 -0.034 -0.099
Equity vol 1.950 2.688 3.838 5.497 7.865
CAPM beta 5.083 6.288 7.841 9.431 10.989
Jensen’s alpha -0.150 -0.245 -0.370 -0.509 -0.653

ω =0 Equity premium 0.244 0.307 0.391 0.488 0.595
Equity vol 2.297 3.421 5.413 8.754 14.325
CAPM beta 5.723 7.648 10.569 14.355 19.127
Jensen’s alpha -0.042 -0.075 -0.137 -0.229 -0.361

ω =0.12 Equity premium 0.328 0.481 0.710 1.014 1.404
Equity vol 2.375 3.753 6.436 11.464 20.895
CAPM beta 6.097 8.649 12.955 19.382 28.764
Jensen’s alpha 0.042 0.076 0.102 0.104 0.054
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Panel A: Gamma process
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Panel B: Inverse Gaussian process
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Figure 1: Sample Paths of Business Time

Panels A and B plot sample paths of the gamma process and the inverse Gaussian process with κ = 0.3970 as

business time, respectively. In the panels, the solid line shows each stochastic process, while the dashed line

shows the case when business time always equals calendar time.
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Panel A: Probability weighting in VG
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Panel B: Probability weight in NIG
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Figure 2: Probability Weight Functions

Panels A and B plot probability weighting functions for VG and NIG, respectively. In the panels, the solid line

shows probability weighting for the non-biased investor (ω = 0), the dashed line for the pessimistic investor

(ω = -0.12), and the dotted line for the optimistic investor (ω = 0.12).
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Panel A: Risk-free interest rate in VG
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Panel B: Risk-free interest rate in NIG
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Figure 3: Risk-free Interest Rates

Panels A and B plot risk-free interest rates across relative risk aversion γ under VG and NIG, respectively. In

the panels, the solid line shows interest rate for the non-biased investor (ω = 0), the dashed line for the

pessimistic investor (ω = -0.12), and the dotted line for the optimistic investor (ω = 0.12).
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Panel A: Pricing kernel in VG
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Panel B: Pricing kernel in NIG
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Figure 4: Projections of Pricing Kernels onto Consumption Growth Rate

Panels A and B plot the projections of pricing kernels onto the log consumption growth rate for VG and NIG,

respectively. In the panels, the solid line shows pricing kernel for the non-biased investor (ω = 0), the dashed

line for the pessimistic investor (ω = -0.12), and the dotted line for the optimistic investor (ω = 0.12).
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4 Conclusion

This paper suggests incorporating investor probability weighting and firm default risk into a
consumption-based asset pricing model. The model offers a unified solution, with a number of
seemingly anomalous patterns observed on financial markets.

As shown in the analysis, mild overweighting of probability on tail events has the potential
to resolve the risk-free rate puzzle, while the financial leverage effect on equity values could
reconcile both the equity premium and excess volatility puzzles. Furthermore, the analysis
sheds light on anomalous patterns observed on financially distressed stocks. The simulations
demonstrate the combination of mild probability weighting and higher default risk causes a
cross-sectional relationship that expected excess returns on distressed stocks are decreasing in
deterioration of the default risk. Strict nonlinearity of distressed stock returns against con-
sumption growth rates create the anomalous correlation structure among them. The model
also predicts large CAPM betas and negative Jensen’s alphas for the distressed stocks. The
implications derived from the model can help us better understand financial markets.

Finally, I acknowledge there are a number of directions for future research. A natural
direction would be to extend the framework in this paper to a time-inhomogeneous model.
This implies that random shocks in the economy are no longer independent and identically
distributed. Although the analysis based on the extended model will be technically more
difficult, it might predict the term structure of interest rates. Moreover, it might be challenging
to expand the investigation object into options markets. In the framework of this paper, the
options contract written on a stock can be thought of as a compound option written on the
aggregate consumption, that is, the option of an option. Another interesting direction is further
empirical analyses, such as testing the model for economic disasters such as the subprime loan
crisis. Numerous firms suffer from financial distress during financial crises. Furthermore, the
model is desirable to be used for the empirical analysis of financial markets other than the U.S.
market.

A Properties of Lévy Processes

A stochastic process X := (Xt)t≥0 on a filtered probability space (Ω,F , (Ft)t≥0,P) with values
in R such that X0 = 0 is called a Lévy process if it possesses the following properties: (i) X
is adapted to the filtration (Ft)t≥0. (ii) The sample paths of X are right continuous and left
limits. (iii) For 0 ≤ t < u, Xu−Xt is independent of Ft and has the same distribution as Xu−t.

A.1 Lévy-Khintchine Formula

Lemma A.1 (Lévy-Khintchine Formula) Let X be a Lévy process with values in R. The
characteristic function of the distribution of Xt has the form4

ΦXt(θ) := E
[
eiθXt

]
= etφX(θ), (A.1)

where θ ∈ R and the function φX called the characteristic exponent is given by

φX(θ) = iαθ − 1

2
βθ2 +

∫ ∞

−∞

(
eiθx − 1− iθx1{|x|≤1}

)
Π(dx), for θ ∈ R. (A.2)

4In Appendices A, C, and D, I omit superscripts on functions and operators denoting probability measures,
because these appendices provides mathematically general discussions. The results derived below are held under
suitable probability measures.
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Here, α ∈ R and β ≥ 0 are constants, and Π is a positive Radon measure on R \ {0} satisfying∫ ∞

−∞
(1 ∧ x2)Π(dx) <∞.

Parameter β is called the Gaussian coefficient and the measure Π is known as the Lévy mea-
sure. The Gaussian coefficient β is the constant variance of the continuous component of the
Lévy process and the Lévy measure Π determines its jump structure. The proof of the Lévy-
Khintchine formula can be found, for example, on pages 37-45 of Sato (1999). The Laplace
exponent of X is defined as LX(θ) := φX(−iθ), which is equivalent to the cumulant generating
function of the distribution of X1.

The business time τ := (τt)t≥0 is defined as an increasing Lévy process that satisfies α ≥ 0,
β = 0, and Π((−∞, 0]) = 0. Thence, the business time has no diffusion component, only
positive jumps with finite variation, and a positive drift.

A.2 Business Time

Let τ be business time. The moment generating function of τt is given by

Ψτt(θ) := E
[
eθτt

]
= etL(θ),

for all θ ∈ (−∞, a], where a ≥ 0 is some constant such that the Laplace exponent L(θ) is well
defined and

L(θ) = αθ +

∫ ∞

0

(
eθx − 1

)
Π(dx).

Table A.1 exhibits the Lévy measures and the Laplace exponents of two well known increasing
Lévy processes to model the business time; gamma process and inverse Gaussian process. They
have only one parameter κ > 0 with α = 0 and E [τt] = t for every t ≥ 0.

Table A.1: Examples of Business Time
The table exhibits the Lévy measures and the Laplace exponents of gamma process and inverse Gaussian process,

both of which have parameter κ > 0. These processes are typical examples for modeling business time.

Business time Lévy measure Π(dx) Laplace exponent L(θ)

Gamma process
κ

x
e−κx1{x>0}dx − 1

κ
log (1− κθ)

Inverse Gaussian process
κ

x3/2
e−κx1{x>0}dx − 1

κ

(√
1− 2κθ − 1

)

Lemma A.2 (Properties of Laplace Exponent) Let L(θ) be the Laplace exponent of busi-
ness time τ . Suppose that L(θ) is twice differentiable on (−∞, a]. Then, L(θ) is an increasing
and convex function on (−∞, a] and L(0) = 0. That is, L(θ) is non-positive on (−∞, 0), but
non-negative on (0, a].

Proof of Lemma A.2: Because τ is a non-negative process, it satisfies, for any t ≥ 0

d

dθ
E
[
eθτt

]
= E

[
τte

θτt
]
≥ 0.
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Hence, it must be held that, for any t ≥ 0,

d

dθ
etL(θ) = tL′(θ)etL(θ) ≥ 0.

Therefore, L′(θ) ≥ 0. Next, for any t ≥ 0, one has

d2

dθ2
E
[
eθτt

]
= E

[
τ2t e

θτt
]
≥ 0.

Consequently, it must satisfy that, for any t ≥ 0,

d2

dθ2
etL(θ) =

(
tL′′(θ) + t2L′(θ)2

)
etL(θ) ≥ 0. (A.3)

Here, f(t) := tL′′(θ) + t2L′(θ)2. The inequality (A.3) indicates f(t) ≥ 0 for all t ≥ 0. If
L′′(θ) < 0, then f(t) < 0 for 0 < t < −L′′(θ)L′(θ)−2. This is a contradiction. On the other
hand, if L′′(θ) ≥ 0, then f(t) < 0 for every t ≥ 0. Finally, L(0) = 0 is trivial. □

Lemma A.3 (Subordination) Let Y := (Y (t))t≥0 be a drifted Brownian motion, that is,
Y (t) = ωt+ σW (t) for every t ≥ 0, where ω ∈ R and σ > 0 are constants and W := (W (t))t≥0

is a one-dimensional standard Brownian motion. Let τ be business time with Laplace exponent
L(θ). Then, the stochastic process X := (Xt)t≥0 defined by Xt = Y (τt) = ωτt + σW (τt) for
every t ≥ 0 is a Lévy process and its characteristic exponent has the form

φX(θ) = L
(
−σ2θ2/2 + iωθ

)
.

The Lévy process X is thought of as a time-changed Brownian motion by business time τ . This
transformation is called the subordination. The proof of Lemma A.3 can be found, for example,
on pages 108-109 of Cont & Tankov (2004).

A.3 Esscher Transform

Let X = (Xt)t≥0 be a Lévy process. The Esscher transform by X from the original measure P
to a new measure Q with parameter a ∈ R is defined by the Radon-Nikodym derivative

dQ
dP

∣∣∣∣
t

:=
eaXt

EP [eaXt ]
.

By the Esscher transform, the Lévy-Khintchine representation (A.2) is transformed into

φQ
X(θ) = φP

X(θ − ia)− ψP
X(a)

= iα̃θ − 1

2
βθ2 +

∫ ∞

−∞

(
eiθx − 1− iθx1{|x|≤1}

)
Π̃(dx),

where

α̃ := α+ aβ +

∫ 1

−1

x (eax − 1)Π(dx), and Π̃(x) := eaxΠ(x).

The transformed Lévy measure Π̃ is exponentially tilted, which causes to change the jump
structure of the Lévy process X under the new probability measure Q, while the Gaussian
coefficient β is unvaried. When a < 0, transforming into the Lévy measure Π̃ is called the
tempering with parameter a and X under Q is known as the tempered Lévy process.
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B Proofs

B.1 Proof of Lemma 1

From the definition of the risk-neutral probability Q and (A.1), one has

ΦQ
Rt
(θ) = EQ [eiθRt

]
= ertEP [MS

t e
iθRt

]
= exp

{
iθµt− L(γ2σ2/2− γω)t

}
EP [exp {(iθ − γ)σW (τt)− γωτt}]

= etφ
Q
R(θ).

Proposition 1 and Lemma A.2 are applied to the third and the last equalities of the above
equation, respectively. In a similar manner, one can obtain the representation (8) that offers
the characteristic exponent of Rt under the subjective probability. □

B.2 Proof of Proposition 1

Following to the Euler equation, the price of a zero-coupon risk-free bond can represented as

B(t) = EP [MS
t

]
= exp {− (δ + γµ− γω) t}EP [exp {−γσW (τt)− γωτt}]

= exp {− (δ + γµ− γω) t} exp
{
L(γ2σ2/2− γω)t

}
.

Lemma A.2 is used in the last equality of the above equation. □

B.3 Proof of Proposition 2

Using the relation (A.1), one has

EP
t

[
MS

u

MS
t

Zu

]
= Zte

−δ(u−t)EP
t

[(
CS
u

CS
t

)−γ (
Zu
Zt

)]
= Zte

−ξ(u−t).

Because of ξ > 0 by Assumption 1, the firm value (12) holds

Vt =

∫ ∞

t

Zte
−ξ(u−t)du =

Zt
ξ
.

□

C Some Lemmas

This appendix provides some lemmas used for computation in the simulation and calibration.
Let F−1[f ](k) := 1

2π

∫∞
−∞ e−iθkf(θ)dθ be the inverse Fourier transform of a function f with

respect to parameter θ, where f is a complex-valued function of parameter θ.

Lemma C.1 For any k, a, b ∈ R and T ≥ 0, define

Aa,b(k, T ) := E
[
eaRT+bk1{RT>k}

]
.

Then, it satisfies
Aa,b(k, T ) = F−1 [fa,b] (k) + eTψR(a)+bk1{q>k}, (C.1)
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Table A.3: Model Parameters of Consumption Growth Rate Process
Panel A exhibits the original parameters for the consumption growth rate process under the objective probability

measure P molded by Brownian motion (BM), variance gamma process (VG), and normal inverse Gaussian

process (NIG). Panels B and C show the transformed parameters under the subjective probability measure PS

and the risk-neutral probability measure Q, respectively.

Panel A: Objective parameters
BM VG NIG

σP σ σ σ

κP κ κ

ωP 0 0 0

Panel B: Subjective parameters
BM VG NIG

σS σ
σ√

1 + ωκγ

σ
4
√
1 + 2ωκγ

κS κ
κ√

1 + 2ωκγ

ωS 0 0 0

Panel C: Risk-neutral parameters
BM VG NIG

σQ σ
σ√

1− κσ2γ2/2 + ωκγ

σ
4
√
1− κσ2γ2 + 2ωκγ

κQ κ
κ√

1− κσ2γ2 + 2ωκγ

ωQ −σ2γ
−σ2γ

1− κσ2γ2/2 + ωκγ

−σ2γ√
1− κσ2γ2 + 2ωκγ
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where q ∈ R is an arbitrary control parameter5and

fa,b(θ) :=
ΦRT

(θ − i[a+ b])− e(iθ+b)qΨRT
(a)

iθ + b
.

Proof of Lemma C.1: Define the function h as

h(k) := E
[
eaRT+bk1{RT>k}

]
− eTψR(a)+bk1{q>k}.

Because E
[
eaRT

]
= eTψR(a), one has

h(k) = E
[
eaRT+bk

(
1{RT>k} − 1{q>k}

)]
.

Denote the Fourier transform of h with respect to parameter k by fa,b(θ) := F[h](θ). Then, it
satisfies

fa,b(θ) =

∫ ∞

−∞
eiθkh(k)dk = E

[∫ RT

q

eiθkeaRT+bkdk

]

=
1

iθ + b
E
[
e(iθ+a+b)RT − eaRT+(iθ+b)q

]
=

ΦRT
(θ − i[a+ b])− e(iθ+b)qΨRT

(a)

iθ + b
.

By the inverse Fourier transform of fa,b, the formula (C.1) is obtained. □

Lemma C.2 For any a, r ∈ R and T ≥ 0, define

Ia(r, T ) := E

[∫ T

0

e−rueaRudu

]
.

Then, it satisfies

Ia(r, T ) =
1− e−rTΨRT

(a)

r − ψR(a)
.

Proof of Lemma C.2: It is trivial. □

Lemma C.3 For any a, b, r ∈ R and T ≥ 0, define

Ja,b(r1, r2, T ) := E

[(∫ T

0

e−r1ueaRudu

)(∫ T

0

e−r2uebRudu

)]
.

Then, it satisfies

Ja,b(r1, r2, T ) =
1

r2 + ψR(a)− ψR(a+ b)

[
Ia(r1, T )−

1− e−(r1+r2)TΨRT
(a+ b)

r1 + r2 − ψR(a+ b)

]
+

1

r1 + ψR(b)− ψR(a+ b)

[
Ib(r2, T )−

1− e−(r1+r2)TΨRT
(a+ b)

r1 + r2 − ψR(a+ b)

]
.

5A standard choice for control parameter q is TψR(1), which is the mean value of RT . See the chapter 11.1.3
in Cont & Tankov (2004) and the appendix A in Yamazaki (2018) for example.
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Proof of Lemma C.3: Define the function ha,b as

ha,b(u, s) := E
[
eaRu+bRs

]
.

for any 0 ≤ s < u ≤ T . Then, by the law of iterated expectations and the independent and
stationary properties of increments of Lévy processes, one has

ha,b(u, s) = E
[
e(a+b)RsEs

[
ea(Ru−Rs)

]]
= E

[
e(a+b)Rse(u−s)ψR(a)

]
= euψR(a)−s(ψR(a)−ψR(a+b)).

Since

Ja,b(r1, r2, T ) = E

[∫ T

0

∫ u

0

e−r1ueaRue−r2sebRsdsdu+

∫ T

0

∫ u

0

e−r2uebRue−r1seaRsdsdu

]

=

∫ T

0

∫ u

0

e−(r1u+r2s)ha,b(u, s)dsdu+

∫ T

0

∫ u

0

e−(r2u+r1s)hb,a(u, s)dsdu,

the proof is completed. □

Lemma C.4 For any a, b, r, k ∈ R and T ≥ 0, define

Ga,b(r, k, T ) = E

[(∫ T

0

e−rueaRudu

)
ebRT 1{RT>k}

]
.

Then, it satisfies

Ga,b(r, k, T ) = F−1 [ga,b] (k) +
ΨRT

(b)− e−rTΨRT
(a+ b)

r + ψR(b)− ψR(a+ b)
1{q>k}, (C.2)

where q ∈ R is an arbitrary control parameter and

ga,b(θ) =
1

iθ

[
ΦRT

(θ − ib)− e−rTΦRT
(θ − i[a+ b])

r + φR(θ − ib)− φR(θ − i[a+ b])
− eiθq

ΨRT
(b)− e−rTΨRT

(a+ b)

r + ψR(b)− ψR(a+ b)

]
.

Proof of Lemma C.4: First of all, define the function h1 as

h1(k, u) := Eu
[
eb(RT−Ru)1{RT>k}

]
− e(T−u)ψR(b)1{q>k}.

Because Eu
[
eb(RT−Ru)

]
= e(T−u)ψR(b), one has

h1(k, u) = Eu
[
eb(RT−Ru)

(
1{RT>k} − 1{q>k}

)]
.

Denote the Fourier transform of h1 with respect to parameter k by ĥ1(θ, u) := F[h1](θ). Then,
it satisfies

ĥ1(θ, u) =

∫ ∞

−∞
eiθkh1(k, u)dk = Eu

[∫ RT

q

eiθkeb(RT−Ru)dk

]

=
1

iθ
Eu
[
eiθRu+(iθ+b)(RT−Ru) − eiθq+b(RT−Ru)

]
=

1

iθ

[
eiθRu+(T−u)φR(θ−ib) − eiθq+(T−u)ψR(b)

]
.
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Therefore, by the inverse Fourier transform of ĥ1 with respect to parameter θ, one has

Eu
[
eb(RT−Ru)1{RT>k}

]
= F−1

[
ĥ1

]
(k) + e(T−u)ψR(b)1{q>k}. (C.3)

Next, define the function h2 as

h2(k, u) := E
[
eaRuebRT 1{RT>k}

]
.

Using the law of iterated expectations and (C.3), it satisfies

h2(k, u) = E
[
e(a+b)RuEu

[
eb(RT−Ru)1{RT>k}

]]
= E

[
e(a+b)RuF−1

[
ĥ1

]
(k)
]
+ e(T−u)ψR(b)1{q>k}E

[
e(a+b)Ru

]
= F−1

[
ĥ2

]
(k) + eTψR(b)e−u(ψR(b)−ψR(a+b))1{q>k},

where ĥ2(θ, u) := E
[
e(a+b)Ru ĥ1(θ, u)

]
. Plugging into ĥ1(θ, u), one has

ĥ2(θ, u) =
1

iθ

[
e(T−u)φR(θ−ib)E

[
e(iθ+a+b)Ru

]
− eiθq+(T−u)ψR(b)E

[
e(a+b)Ru

]]
=

1

iθ

[
eTφR(θ−ib)e−u(φR(θ−ib)−φR(θ−i[a+b])) − eiθq+TψR(b)e−u(ψR(b)−ψR(a+b))

]
.

Finally, one has

E

[(∫ T

0

e−rueRudu

)
eRT 1{RT>k}

]
=

∫ T

0

e−ruh2(k, u)du

= F−1

[∫ T

0

e−ruĥ2(θ, u)du

]
(k) + eTψR(b)1{q>k}

∫ T

0

e−u(r+ψR(b)−ψR(a+b))du

= F−1 [ga,b] (k) +
ΨRT

(b)− e−rTΨRT
(a+ b)

r + ψR(b)− ψR(a+ b)
1{q>k},

where

ga,b(θ) :=

∫ T

0

e−ruĥ2(θ, u)du

=
1

iθ

[
ΦRT

(θ − ib)− e−rTΦRT
(θ − i[a+ b])

r + φR(θ − ib)− φR(θ − i[a+ b])
− eiθq

ΨRT
(b)− e−rTΨRT

(a+ b)

r + ψR(b)− ψR(a+ b)

]
.

By the inverse Fourier transform of g1, the formula (C.2) is obtained. □

Lemma C.5 For any a, b, r, k ∈ R and T ≥ 0, define

Ha,b(r, k, T ) := E

[(∫ T

0

e−rueaRudu

)
ebk1{RT>k}

]
.

Then, it satisfies

Ha,b(r, k, T ) = F−1 [ha,b] (k) +
1− e−rTΨRT

(a)

r − ψR(1)
ebk1{q>k}, (C.4)

where q ∈ R is an arbitrary control parameter and

ha,b(θ) :=
1

iθ + b

[
ΦRT

(θ − ib)− e−rTΦRT
(θ − i[a+ b])

r + φR(θ − ib)− φR(θ − i[a+ b])
− eiθq+bTψR(1) 1− e−rTΨRT

(a)

r − ψR(a)

]
.
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Proof of Lemma C.5: One can obtain the representation (C.4) in a similar manner to the
proof of Lemma C.4. □

D Moments of ΛT

The computation formulas for moments of ΛT defined in (19) are needed to obtain fundamental
statistics for stock returns in Section 2.8. However, instead of ΛT , consider moments of ΥT :=
ΛT /(V0e

rT ) for simplicity of notations. The first and the second moments of ΥT are given by

E [ΥT ] = ξηIν(r̄, T ) + e−r̄T [Aν,0(k, T )−A0,ν(k, T )] ,

and

E
[
(ΥT )

2
]
= ξ2η2Jν,ν(r̄, r̄, T ) + 2ξηe−r̄T [Gν,ν(r̄, k, T )−Hν,ν(r̄, k, T )]

+ e−2r̄T [A2ν,0(k, T )− 2Aν,ν(k, T ) +A0,2ν(k, T )] ,

respectively, where r̄ := r + µν − ζ and k := ν−1 log(F/V0) + (µ − ζν−1)T . Next, suppose
k1 > k2, where kl := ν−1

l log(Fl/Vl,0) + (µ − ζlν
−1
l )T for firm l. The cross moment between

Υ1,T and Υ2,T , instead of Λ1,T and Λ2,T , is given by

E [Υ1,TΥ2,T ] = ξ1ξ2η1η2Jν1,ν2(r̄1, r̄2, T )

+ ξ1η1e
−r̄2T [Gν1,ν2(r̄1, k2, T )−Hν1,ν2(r̄1, k2, T )]

+ ξ2η2e
−r̄1T [Gν2,ν1(r̄2, k1, T )−Hν2,ν1(r̄2, k1, T )]

+ e−(r̄1+r̄2)T
[
Aν1+ν2,0(k1, T )− eν2k2Aν1,0(k1, T )

−Aν2,ν1(k1, T ) + eν2k2A0,ν1(k1, T )
]
,

where r̄l := r + µνl − ζl for l = 1, 2.
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