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Abstract

This paper provides a comprehensive evaluation of volatility forecasters, each reflect-
ing a distinct risk preference, for predicting realized volatility of the S&P 500 index from
option prices. These forecasters are benchmarked against a risk-neutral counterpart, cor-
responding to the VIX index. Our empirical analysis shows that the forecaster drawn
from Chabi-Yo and Loudis (2020) consistently delivers the strongest performance: it forms
rational expectations for realized volatility, achieves superior out-of-sample predictive ac-
curacy, and substantially improves trading outcomes in variance swap strategies. The
remaining forecasters also provide effective predictors, whereas the risk-neutral bench-
mark exhibits relatively weak predictive performance. Incorporating skewness and kur-
tosis fails to enhance out-of-sample performance, suggesting that the original predictors
are sufficient.

Keywords: realized volatility, predictive power, S&P 500 index, risk preference,
option prices

Classification codes: G12, G13, G17

1 Introduction

We evaluate a set of volatility forecasting agents, referred to as forecasters, each embodying
a distinct risk preference. These forecasters extract their predictions for realized volatility of
the S&P 500 index from option prices.

The question of whether financial market dynamics are predictable has long drawn the
interest of both academics and practitioners, given its implications for asset pricing and
investment decisions. First and foremost, the literature has addressed the predictability of
aggregate market returns, which has been the subject of extensive debate. Early evidence sug-
gesting return predictability posed a challenge to the efficient market hypothesis, prompting
researchers to investigate predictive variables—most notably the dividend-price ratio—that
might contain information about future returns. Panel A of Figure 1 illustrates results from
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a simple regression of S&P 500 excess returns over the subsequent 180 days on the dividend-
price ratio. The estimated R2 of 0.109 indicates only modest explanatory power. Moreover,
the predictive content of the dividend-price ratio, as well as that of many other proposed pre-
dictors, is limited by well-documented issues such as small-sample bias (Stambaugh, 1999),
temporal instability, and poor out-of-sample performance (Goyal and Welch, 2008).

In contrast, the forecasting of realized volatility has garnered increasing attention. A large
body of research documents that volatility is time-varying (Engle, 1982; Bollerslev, 1986)
and responds asymmetrically to unanticipated shocks (Black, 1976; Nelson, 1991). These
characteristics complicate the modeling of volatility, prompting the development of nonlinear
models capable of capturing its complex dynamics (McAleer and Medeiros, 2008). However,
such models often involve difficult estimation challenges: their log-likelihood functions are
typically non-convex and may contain multiple local optima, making inference unreliable.
Furthermore, Pavlidis et al. (2012) show that these models rely heavily on historical time-
series data and tend to perform poorly in out-of-sample forecasts.

As a forward-looking alternative, the VIX index is widely used as a predictor of S&P
500 realized volatility. Unlike time-series models, the VIX index reflects market participants’
expectations, rather than being based on past returns. Panel B of Figure 1 presents regression
results of realized S&P 500 volatility over the subsequent 30 days on the VIX index. The VIX
index demonstrates substantial predictive power for future volatility—arguably stronger than
the dividend-price ratio’s ability to forecast returns. This empirical contrast motivates our
focus on realized volatility forecasting, which appears to offer a more robust and empirically
tractable alternative to return predictability.

Nevertheless, relying on the VIX index as a volatility forecast raises both theoretical and
empirical concerns. By construction, the VIX index represents the square root of the risk-
neutral expectation of future variance and thus reflects the forecast of a risk-neutral investor
rather than that under the physical measure. This introduces a systematic upward bias when
the VIX index is used to predict realized volatility. Indeed, the slope coefficient of 0.83 in
Panel B suggests that the VIX index consistently overstates subsequent volatility. Empiri-
cal evidence supports this observation: Carr and Wu (2009) find that variance swaps earn
negative risk premia, implying that risk-neutral forecasts tend to exceed realized outcomes.
Similarly, Cumby et al. (1993), Jorion (1995), and Adhikari and Hilliard (2014) report that
the VIX index performs no better than simple historical volatility as a forecasting tool. These
limitations underscore the need for alternative volatility forecasts that incorporate forecaster
risk preferences and improve predictive accuracy under the physical measure.

Our approach builds on recent work that derives ex ante market expectations from option
prices, beginning with Martin (2017). Martin, as well as Chabi-Yo and Loudis (2020), derives
lower bounds on market risk premia from option prices in a manner consistent with asset
pricing theory. Martin and Wagner (2019) and Kadan and Tang (2020) extend this framework
to estimate bounds on the risk premia of individual stocks. These studies argue that such
bounds represent a significant advance in forecasting stock returns. In this paper, we adopt
a similar methodology to forecast realized volatility. We consider several forecasters drawn
from existing literature, each characterized by a distinct risk preference and constructing a
volatility predictor in real time from observed option prices.

We carry out three sets of comparisons using the data on the S&P 500 index and its
option prices. First, we benchmark predictive performance against historical volatility, which
is sometimes replaced by an expanding-window sample average of realized volatility. Sec-
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ond, we assess performance relative to the risk-neutral forecaster, whose volatility predictor
corresponds to the VIX index. A central objective of this paper is to identify a forecaster
that outperforms this risk-neutral benchmark. Third, we compare predictive performance
across two targets—realized volatility versus market excess returns—using the same set of
forecasters, some of whose predictors for market returns correspond to the market premium
bounds described above. As shown in Figure 1, predictor variables for realized volatility
generally exhibit stronger predictive power than those for market excess returns. Our aim is
to quantify the magnitude of this difference.

We assess whether each forecaster forms rational expectations of future realized volatility
by regressing realized volatility on the forecaster’s volatility predictor. Specifically, we test
the following two hypotheses: (i) the volatility predictor is unbiased and (ii) it is a statistically
significant predictor of future realized volatility. Our results show that, for most combinations
of forecaster and forecasting horizon, both hypotheses cannot be rejected, indicating that
these forecasters produce unbiased and informative forecasts of realized volatility. In contrast,
when the same tests are applied to predictions of market excess returns, most forecasters fail
to generate a significant forecasting signal.

Next, we evaluate each forecaster’s predictive power using out-of-sample R2 alongside a
mean squared predictive error (MSPE)-based test. The results reveal that certain forecasters
deliver statistically significant predictive power for realized volatility across all forecasting
horizons, consistently outperforming the historical average of realized volatility. In contrast,
the risk-neutral benchmark becomes insignificant at horizons beyond three months, suggesting
that the VIX-like index is not necessarily a better predictor than the historical benchmark.
Moreover, the risk-neutral forecaster exhibits a systematic bias, tending to overstate future
volatility. By comparison, forecasting performance for market excess returns is uniformly
weak across nearly all forecaster-horizon combinations.

To enhance predictive accuracy, we augment our realized volatility regressions by in-
cluding the skewness and kurtosis of future market returns—derived from option prices and
interpreted as proxies for price jump risk—as additional regressors. Although these higher-
moment variables are statistically significant in in-sample regressions, the multivariate models
deliver predictive performance comparable to the original univariate specifications. Further-
more, their out-of-sample performance deteriorates markedly due to overfitting. These results
suggest that the forecasters’ unmodified volatility predictors offer superior forecasting per-
formance.

Finally, to assess the economic value of realized volatility forecasts, we conduct a variance
swap trading exercise. In this setting, a mean-variance investor relies on a selected forecaster
to determine her position in the variance swap. Trading performance is evaluated using both
Sharpe ratios and gains in certainty equivalent return. Our results show that strategies based
on volatility predictors achieve substantially higher Sharpe ratios than those using a historical
volatility benchmark and yield meaningful improvements in investor utility. For comparison,
we also perform a parallel exercise in which market return predictors are used to guide
investments in the S&P 500 index. In this case, investment performance largely mirrors that
of the historical benchmark. Taken together, these findings suggest that volatility predictors
generate robust returns in variance swap trading strategies, whereas market return predictors
offer limited benefits.

The related literature not cited above is briefly summarized as follows. A substantial
body of research has examined the role of implied volatility in forecasting realized volatility.
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For instance, Day and Lewis (1992), who study S&P 100 index options, and Lamoureux
and Lastrapes (1993), who investigate options on ten individual stocks, find that implied
volatility is biased and contains less predictive information about future realized volatility
than historical volatility. In contrast, Christensen and Prabhala (1998) and Christensen and
Hansen (2002), both of whom examine implied volatility on the S&P 100 index, conclude
that implied volatility is an unbiased and efficient predictor for realized volatility.

In parallel, a growing number of studies have extended traditional time-series models to
enhance volatility forecasting. Ghysels et al. (2006) propose mixed data sampling (MIDAS)
regressions that integrate information from variables observed at different frequencies. Corsi
(2009) introduces the Heterogeneous Autoregressive (HAR) model, which captures volatility
components realized over different horizons. Kambouroudis et al. (2016, 2021) incorporate
implied volatility into time-series models and report improvements in predictive accuracy.
More recently, Bucci (2020) explore the use of neural networks for volatility forecasting,
demonstrating their competitive performance. In addition, Andersen et al. (2001, 2003)
employ high-frequency intraday data to estimate realized volatility at daily and lower fre-
quencies, offering insights into its statistical properties. Caporin (2023) investigates the role
of jumps in underlying asset prices and finds that incorporating jump components enhances
the in-sample performance of standard volatility models.

Studies on option-implied financial econometrics are directly relevant to this paper. Bak-
shi et al. (2003) calculate risk-neutral skewness from option prices and document its variation
over time and across individual stocks. Back et al. (2022) evaluate the validity, tightness,
and predictive power of option-implied risk premium bounds proposed by Martin (2017),
Chabi-Yo and Loudis (2020), Martin and Wagner (2019), and Kadan and Tang (2020). They
find that while these bounds are valid, they are not tight, and their predictive power remains
inconclusive. Bakshi et al. (2023) estimate the probability of market disasters using S&P
500 index options, adopting an investor who dislikes higher volatility states—an agent whose
behavior we model as a forecaster in this paper. Yamazaki (2022) proposes a method for
recovering stock return distributions from option prices, and Yamazaki (2025) extends this
approach to recover subjective probabilities for nonlinear payoffs.

The remainder of this paper is organized as follows. Section 2 outlines the methodology
used to forecast realized volatility and introduces the forecasters, who are distinguished by
their differing risk preferences. Section 3 describes the data employed in the empirical analy-
sis. Section 4 presents the empirical findings, and Section 5 concludes. Proofs and technical
details are provided in the Appendix, while additional empirical results are reported in the
Internet Appendix.

2 Methodology

This section presents our methodology for forecasting realized volatility. Our forecasting
target is the realized volatility of a stock over the horizon [t, T ], defined as

RVt,T :=

√√√√ 1

T − t

∑
i∈I

(
Si

Si−∆t
− 1

)2

, (2.1)

where St denotes the stock price at time t. Here, I := {t + ∆t, t + 2∆t, . . . , T} is the set
of monitoring dates, and ∆t represents the monitoring interval, which corresponds to one
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trading day.

2.1 Realized Volatility Predictor

We assume that a forecaster considers the stock price process as follows:

dSu

Su
= µtdu+ σudWu for all u ∈ [t, T ], (2.2)

where Wu is a standard Brownian motion under a physical probability measure P, and σu is
an unknown stochastic volatility process. The forecaster assumes the drift term to be

µt :=
1

T − t
logEP

t

[
ST

St

]
,

where EP
t [ · ] denotes the time-t conditional expectation operator under P.

We define a realized volatility predictor (hereafter RVP) as

RVPt :=

√
EP
t

[
1

T − t

∫ T

t
σ2
udu

]
. (2.3)

The aim of this paper is to evaluate the forecasting performance of the RVP with respect to
realized volatilities. Forecasters with differing characteristics hold heterogeneous beliefs about
the physical probability measure P, and consequently adopt distinct RVPs when predicting
future volatility.

Our basic approach to computing the RVP is as follows. By applying Itô’s lemma to
(2.2), the RVP can be rewritten as

RVPt =

√
2

T − t

(
logEP

t

[
ST

St

]
− EP

t

[
log

ST

St

])
. (2.4)

We assume an arbitrage-free economy, which ensures the existence of a strictly positive
stochastic discount factor (hereafter SDF). Let mt,T denote the SDF from time t to T . The
projected SDF conditional on ST , defined by mt(ST ) := EP

t [mt,T |ST ], is assumed to be twice
continuously differentiable. For any twice differentiable time-t measurable function ft(x), the
following representation holds:

EP
t [ft(ST )] =

1

Rf
t,T

(
ft(F )

mt(F )

)
+

∫ F

0

(
ft(K)

mt(K)

)′′
Pt(K)dK +

∫ ∞

F

(
ft(K)

mt(K)

)′′
Ct(K)dK, (2.5)

where Rf
t,T denotes the gross return on the risk-free asset from time t to T , and F is the

time-t forward price of the stock maturing at time T . Pt(K) and Ct(K) represent the time-t
prices of European put and call options written on the stock with strike K and maturity T ,
respectively.

The formula in (2.5), whose proof is provided in Appendix A, is applied to the right-hand
side of (2.4) to compute the RVP. Given a specification of the SDF projection, the RVP can
thus be derived from observed option prices. Crucially, the characteristics of forecasters are
embedded within the specification of the SDF projection.

5



It is important to note that, although realized volatility is inherently path-dependent,
the RVP is constructed based on information embedded in the terminal distribution of the
stock price, as implied by option prices. One of the key research questions of this paper is
whether realized volatility can be predicted from the option-implied terminal distribution of
the underlying asset price.

In general, the SDF projection can be decomposed1 as mt(ST ) = ctnt(ST ), where ct is
a time-varying parameter and nt(x) is a time-t measurable function of x. The parameter ct
can be expressed as

ct =
1

Rf
t,T

(
1

nt(F )

)
+

∫ F

0

(
1

nt(K)

)′′
Pt(K)dK +

∫ ∞

F

(
1

nt(K)

)′′
Ct(K)dK. (2.6)

The derivation of (2.6) can be found in Appendix A. This expression allows us to avoid
unnecessary parameter estimation, as ct can be directly inferred from observed option prices
at time t.

Some potential criticisms may be raised against the RVP as a predictor of realized volatil-
ity. One concern is that the assumed stock price process omits jumps. However, it is well
known that incorporating jumps into a model-free framework is challenging when evaluating
variance swaps and their subspecies. Instead of directly incorporating jumps, we introduce a
proxy variable to capture jump risk in Section 4.3.

Another concern is that the RVP is defined as the square root of the expected integral of
the variance process, rather than the expected value of the square root of the integral, which
might more closely match the definition of realized volatility. Although the latter could, in
principle, yield a more accurate predictor, the RVP aligns with the theoretical foundation
of the VIX index. To address the bias that arises from the non-commutativity between the
square root and the expectation operator, we also assess the predictive performance of the
squared RVP as a predictor of realized variance. The results show that using squared RVP
leads to the same qualitative conclusions as using the RVP itself for forecasting realized
volatility. Detailed results on the forecasting performance for realized variances are provided
in the Internet Appendix.

These considerations highlight the theoretical and practical challenges associated with the
use of the RVP. Nonetheless, the appeal of the RVP lies in its direct link to option-implied
information, offering for a market-based, forward-looking estimate of future volatility. In
contrast to purely historical measures, the RVP can incorporate both the beliefs implied by
current option prices and the forecaster’s risk preferences, thereby reflecting prevailing risk
perceptions, market expectations, and the heterogeneity of forecaster views.

For comparison, we also evaluate the forecasting performance of the future annualized
excess return on the stock, defined as

ERt,T :=
Rt,T −Rf

t,T

T − t
,

where Rt,T denotes the gross return on the stock from time t to T . As a predictor of excess

1Ghosh et al. (2017) consider a similar decomposition within the framework of consumption-based asset
pricing models, referring to ct as a potentially unobservable component. They demonstrate that most of the
time variation in the SDF is attributable to fluctuations in this component.
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return, we use the equity risk premium,

ERPt :=
EP
t [Rt,T ]−Rf

t,T

T − t
, (2.7)

which we refer to as the excess return predictor (hereafter ERP) throughout this paper. The
expected stock return in (2.7) is computed according to the formula given in (2.5).

2.2 Types of Forecasters

A forecaster with a subjective view of market expectations and distinct risk preferences
yields a different RVP, as defined in (2.3). We consider a set of forecasters, each of whom
has a different RVP, to predict realized volatility. In the empirical analysis, we assess which
forecasters demonstrate superior predictive performance.

2.2.1 Risk-Neutral Forecaster

A risk-neutral forecaster relies on a risk-neutral distribution for the future dynamics of the
stock price. The corresponding SDF for such a forecaster is given by mt,T = 1/Rf

t,T . The
resulting risk-neutral RVP coincides with the square root of the standard pricing formula for
a variance swap, and is theoretically equivalent to the VIX index. We use the risk-neutral
forecaster as a benchmark in our analysis.

2.2.2 CRRA Forecaster

A constant relative risk aversion (CRRA) forecaster is characterized by the isoelastic utility
function. The corresponding SDF projection for such a forecaster is given by

mt(ST ) = ct

(
ST

St

)−η

,

where η is a positive constant. The time-varying parameter ct is interpreted, in standard
asset pricing theory, as a subjective discount factor reflecting the forecaster’s rate of time
preference. In our framework, ct can be obtained from (2.6) by setting nt(x) = (x/St)

−η.
This specification implies that the forecaster invests his entire wealth in the stock, and his
relative risk aversion is equal to η.

When η = 1, so that the forecaster has log-utility, the resulting ERP coincides with the
lower bound of the equity premium proposed by Martin (2017) (see Example 2 of Section III
in that paper). Accordingly, the RVP generated by the log-utility forecaster can be viewed as
a counterpart to Martin’s bound. In addition to the log-utility case, we also employ CRRA
forecasters2 with η = 2 and η = 3, which we denote as CRRA2 and CRRA3, respectively, in
our empirical analysis.

2Bliss and Panigirtzoglou (2004) estimate the risk aversion coefficient of a CRRA investor by maximizing
the predictive performance of risk-adjusted probability density functions for the S&P 500 index. At a 6-week
forecasting horizon, they report an estimated coefficient of 3.37, which is statistically significant at the 1%
level. The estimated values gradually decline as the forecasting horizon increases.
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2.2.3 CYL Forecaster

Chabi-Yo and Loudis (2020) adopt a representative investor framework and derive the physi-
cal moments of stock excess returns by applying a Taylor series expansion to the reciprocal of
the investor’s marginal utility. They impose sign restrictions on the risk-neutral moments of
excess returns—specifically, requiring that the odd-order moments are weakly negative. By
further constraining the investor’s tolerance for risk, skewness, and kurtosis, they obtain an
approximate formula for the physical moments that avoids the need to estimate preference
parameters. The first-order moment in this formula yields a lower bound on the equity risk
premium. Empirically, they demonstrate that, at longer horizons, this bound exhibits better
predictive power than the one proposed by Martin (2017).

We adopt the representative investor considered by Chabi-Yo and Loudis (2020) as a
forecaster of realized volatility. Hereafter, we refer to this forecaster as the CYL forecaster,
named after Chabi-Yo and Loudis (2020). In the case of the CYL forecaster, the formula
in (2.5) cannot be directly applied to compute the RVP. Instead, following the results of
Chabi-Yo and Loudis (2020), we employ the following alternative approximate expressions:

EP
t

[
ST

St

]
≈ Rf

t,T +BR1,

and

EP
t

[
log

ST

St

]
≈ logRf

t,T −
4∑

k=1

(−Rf
t,T )

−k

k

(
MQ

k +BRk

)
,

where MQ
n denotes the n-th order risk-neutral moment of the stock’s excess price return, and

BRk is the restricted bound defined in (B.2) of Appendix B.3. Further details are provided
in Appendix B.

2.2.4 BGX Forecaster

Bakshi et al. (2023) propose the following SDF projection:

mt(ST ) = ct exp (η0 − 1 + η1Zt,T ) , (2.8)

where η0 and η1 are constants, and Zt,T represents the excess return on a volatility contract,
defined as

Zt,T :=

{
log ST

St

}2

vt
−Rf

t,T .

Here, vt is the time-t price of a volatility contract that pays {log(ST /St)}2 at maturity T .
While their original specification assumes ct = 1 for all time t, so that the SDF is simply
nt(ST ) = exp (η0 − 1 + η1Zt,T ), we instead apply (2.6) to allow for a time-varying parameter
ct in the SDF projection. The model-free pricing formula for the volatility contract and
the parameter estimation procedure are detailed in Appendix C. We refer to the forecaster
associated with the SDF in (2.8) as the BGX forecaster, named after Bakshi et al. (2023).

The BGX SDF incorporates a state variable representing the excess return on the volatil-
ity contract. When η1 > 0, the BGX forecaster exhibits aversion to high-volatility states.
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It is worth noting that the original specification proposed by Bakshi et al. (2023) also in-
corporates the excess return on the underlying stock as a state variable. However, based on
empirical analysis using S&P 500 index data, Bakshi et al. (2023) find this state variable to
be statistically insignificant. In light of this result, we exclude it from our implementation.
Variance-dependent SDFs of this type have also been proposed by Christoffersen et al. (2013)
and Song and Xiu (2016).

Utilizing the BGX SDF, Bakshi et al. (2023) estimate the probability of equity market
disasters, defined as substantial declines in the S&P 500 index. Their findings indicate that
the disaster probabilities, inferred from S&P 500 index options, not only exhibit predictive
power for realized disaster events but are also systematically linked to the likelihood of
extreme positive returns.

2.3 Risk Preferences

The forecasters introduced in the previous subsection can be distinguished by their risk
preferences. We classify the characteristics of these forecasters using the concepts of relative
risk aversion A, relative prudence P, and relative temperance T , defined as

A := −xm′
t(x)

mt(x)
, P := −xm′′

t (x)

m′
t(x)

, and T := −xm′′′
t (x)

m′′
t (x)

. (2.9)

These definitions are not based on a conventional utility function, but rather follow Rosenberg
and Engle (2002), who define risk preference measures in terms of the SDF.

Both the CRRA and CYL forecasters are characterized by constant relative risk prefer-
ences. The CRRA forecaster exhibits relative risk aversion A = η, relative prudence P = η+1,
and relative temperance T = η + 2. Similarly, the CYL forecaster has constant values of
A = 1, P = 4, and T = 6, with the derivations provided in Appendix B. In contrast, the
BGX forecaster exhibits state-dependent relative risk preferences.

Figure 2 illustrates the relative risk preferences of five forecasters—log-utility (Log-U),
CRRA2, CRRA3, CYL, and BGX—excluding the risk-neutral forecaster. The CYL forecaster
exhibits the same level of relative risk aversion as the log-utility forecaster, implying that its
degree of risk aversion aligns with that of the forecaster consistent with Martin’s (2017)
lower bound. However, the CYL forecaster displays higher relative prudence than both the
log-utility and CRRA2 forecasters, and a level comparable to that of the CRRA3 forecaster.

The relative risk preferences of the BGX forecaster shown in Figure 2 are based on the
parameter value η1 = 0.17, which corresponds to the estimate of the BGX SDF at the 3-
month horizon, and the volatility contract price vt = 0.0121, reflecting the historical average
for contracts with 3 months to maturity. Further details on these values are provided in
Appendix C. Panel A shows that the relative risk aversion of the BGX forecaster declines as
the market return increases and becomes negative when the net market return turns positive.
This indicates that the BGX forecaster becomes risk-seeking in states where the net market
return is positive. Consequently, as shown in Panel B, the relative prudence of the BGX
forecaster diverges when the market is nearly flat—that is, when the gross market return is
close to one.
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3 Data

3.1 Market Data

In our empirical analysis, we use the S&P 500 Index as the underlying asset for predicting
realized volatility. To compute the RVP, we construct a dataset using daily historical option
price data on the S&P 500 Index, obtained from the Cboe DataShop (https://datashop.
cboe.com). The sample period covers January 2007 to August 2023. We collect bid and ask
quotes of out-of-the-money option prices at 3:45 p.m. U.S. Eastern Time, as listed on the
Chicago Board Options Exchange.

For interest rate data, we use U.S. Treasury bill secondary market rates obtained from the
Federal Reserve Economic Data (FRED) (https://fred.stlouisfed.org). Dividend yields
on the S&P 500 Index are calculated by the put-call parity, using prices of near-the-money
call and put options. This approach to extracting implied dividend yields has been employed
in previous studies, such as Aı̈t-Sahalia and Lo (1998) and Polkovnichenko and Zhao (2013).

Our analysis considers forecasting horizons of 1, 2, 3, 4, and 6 months. To align option
data with these horizons, we first compute the Black-Scholes implied volatilities using the
midpoints of bid and ask quotes. We then apply linear interpolation to the squared implied
volatilities of options with maturities close to the target horizon and identical strike prices.
Interest rates and dividend yields corresponding to each horizon are also obtained through
linear interpolation. These procedures enable us to construct constant-maturity market data
suitable for our analysis.

To eliminate data errors and ensure reliable empirical results, we apply several screening
criteria. First, we discard any options with bid quotes less than $0.025 or with negative
bid-ask spreads. We also exclude options with zero open interest or trading volume. For
constructing 1-month market data, we eliminate options with fewer than 8 trading days
remaining until expiration. To ensure no-arbitrage conditions, we further discard any options
that violate the monotonicity of option prices across strikes or fall below the lower bounds of
option prices.

3.2 RVP and Realized Volatility

The procedure for calculating the RVP, based on (2.4) and (2.5), proceeds as follows. First,
implied volatility curves are constructed for each observation date by interpolating implied
volatilities from the constant-maturity market data. To achieve this, we apply a cubic smooth-
ing spline technique, which provides a flexible and robust method for smoothing noisy data
while avoiding overfitting. The spline is fitted to the observed implied volatilities as a function
of log-moneyness, defined as logK/St.

For strike prices beyond the available market range, we extrapolate using the spline-fitted
values at the boundaries. Specifically, when log-moneyness falls below the lowest quoted level,
we adopt the implied volatility estimated at the lowest strike; conversely, when it exceeds
the highest quoted level, we use the value at the highest strike. This extrapolation approach
follows the methodology proposed by Carr and Wu (2009).

The resulting implied volatility curves—combining interpolation within the observed
range and extrapolation beyond it—are then used to compute synthetic option prices via
the Black-Scholes formula. These prices serve as inputs for the formulas in (2.5) and (2.6).
For the numerical integration involved in computing these quantities, we truncate the range of
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strike prices to within ±10 standard deviations of the current index level, where the standard
deviation is approximated using the historical average of near-the-money implied volatilities.
The ERP is computed using the same procedure.

We consider 30 forecaster-horizon combinations, comprising six types of forecasters—the
risk-neutral (RN), log-utility (Log-U), CRRA with η = 2 (CRRA2) and η = 3 (CRRA3),
CYL, and BGX—and five forecasting horizons (1-, 2-, 3-, 4-, and 6-month). Table 1 reports
summary statistics for their respective RVPs, along with realized volatility, denoted as “Re-
alized” in the table. The sample comprises daily observations on the RVPs from January
2007 to August 2023, along with the corresponding realized volatility. The means of the
risk-neutral, log-utility, and CYL RVPs exceed that of realized volatility by approximately
0.2% to 4.6% per year, depending on the type of forecaster and the forecasting horizon. In
contrast, the mean of the BGX RVP is approximately 1.9% to 2.2% per year lower than that
of realized volatility, depending on the horizon. The standard deviations of all RVPs are
smaller than that of realized volatility by about 2.1% to 3.8%. Moreover, while the RVPs
exhibit positive skewness and substantial excess kurtosis, both are less pronounced than those
observed in realized volatility. However, the standard deviations, skewness, and kurtosis of
RVPs may not be directly comparable to those of realized volatility due to differences in their
statistical construction.

Table 2 presents summary statistics for realized excess returns, denoted as “Realized” in
the table, along with the ERPs corresponding to the RVP data reported in Table 1. The
risk-neutral ERP is omitted, as it is identically zero. A comparison of the two tables, focusing
on the CRRA forecasters, reveals a clear pattern: higher relative risk aversion is associated
with lower RVPs and higher ERPs.

Figure 3 presents the time series of the RVPs (left panels) and ERPs (right panels). The
RVPs exhibit strong co-movement. For example, the correlation between the risk-neutral RVP
and the BGX RVP at the 3-month horizon is as high as 0.97. Nevertheless, an ordering in the
levels of the RVPs is observed. Across all horizons, the risk-neutral RVP consistently displays
higher values than the other RVPs throughout most of the sample period, whereas the BGX
RVP tend to remain the lowest. These differences in the levels of the RVPs become more
pronounced as the forecasting horizon increases. As expected, the RVPs exhibit pronounced
peaks during episodes of market distress, such as the 2008 financial crisis and the COVID-19
shock in early 2020. The RVPs also appear to be strongly correlated with the ERPs. For
instance, the correlation between the RVP and the ERP for the log-utility forecaster is 0.95.
This high correlation is theoretically consistent, as the ERP for the log-utility forecaster—
equivalent to Martin’s (2017) bound—corresponds to the discounted value of the risk-neutral
variance of the gross market return, as shown by Martin (2017).

4 Empirical Results

4.1 Expectation Hypothesis Test

To examine the validity of a given RVP as a forecast of realized volatility, we run the following
expectation hypothesis regression over the full sample period:

RVt,T = α+ βRVPt + εT .
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Under the null hypothesis that the RVP represents the expected value of realized volatility,
we expect α = 0 and β = 1. In addition, we test whether the RVP is a statically significant
predictor by evaluating the null hypothesis of β = 0. For comparison, we also include
historical volatility, which is measured at time t over a backward-looking window of the same
length as the forecasting horizon, as an alternative explanatory variable in the regression.
To evaluate the expectation hypothesis, we identify which RVPs satisfy both of the following
conditions: failure to reject the null hypothesis that α = 0 and β = 1, and rejection of the
null hypothesis that β = 0.

Table 3 presents the estimated intercept and slope coefficients from the regression using
daily data with overlapping forecasting horizons. Regression results based on monthly data
are reported in the Internet Appendix. The values in parentheses show the t-statistics for
testing the null hypotheses that α = 0 and β = 1, while the values in square brackets
correspond to the t-statistics for testing the null hypothesis that β = 0. All t-statistics are
adjusted for serial dependence using the Newey and West (1987) method, with the number
of lags set to 1.5 times the number of days in the forecasting horizon, following the lag-length
choice adopted by Back et al. (2022). The R2 values reported in the table are expressed as
percentages.

Table 3 shows that, for the 1-month horizon, the null hypothesis of α = 0 is rejected at
the 10% significance level for the log-utility, CRRA2, CRRA3, and CYL forecasters, with
t-statistics of -1.65, -1.80, -1.91, and -1.81, respectively. For the 6-month horizon, the null
hypothesis of β = 1 is rejected at the 5% and 10% levels for the risk-neutral and BGX
forecasters, with t-statistics of -2.40 and -1.68, respectively. These results indicate that the
corresponding RVPs are biased as forecasts of realized volatility at these horizons. On the
other hand, the null hypothesis of β = 0 is rejected at the 1% level for all forecasters across
all horizons, indicating that each RVP is a statistically significant predictor. Taken together,
24 out of the 30 forecaster-horizon combinations satisfy the expectation hypothesis, with the
remaining six cases failing to do so.

For comparison, Table 4 reports the results of the expectation hypothesis regression of
realized excess returns for the S&P 500 index on the ERP, replacing the RVP as the indepen-
dent variable. The table shows that the null hypothesis of α = 0 and β = 1 is not rejected
for most forecasters, consistent with previous studies such as Martin (2017) and Chabi-Yo
and Loudis (2020). However, with the exception of the 6-month horizon and a few other
cases, the null hypothesis of β = 0 is also not rejected, indicating that most ERPs lack sta-
tistical significance as predictors of realized excess returns. Taken together, only four of the
30 forecaster-horizon combinations satisfy the expectation hypothesis for the S&P 500 index
excess returns: the CRRA2, CRRA3, and BGX forecasters at the 6-month horizon, and the
BGX forecaster at the 2-month horizon. The remaining 26 combinations fail the test. It is
also noteworthy that the R2 values from the excess return regressions are substantially lower
than those from the realized volatility regressions, ranging from 0.1% to 12%, compared with
20% to 53% for realized volatility.

Figure 4 plots the point estimates of the slope coefficients along with their 95% confidence
intervals from regressions based on monthly data. The confidence intervals are calculated us-
ing the Newey and West (1987) estimator, with the lag length set to the forecasting horizon
(in months) plus 12 months. The left panels display estimates from regressions of realized
volatility on the RVPs, while the right panels show those from regressions of excess returns
on the ERPs. The figure demonstrates that slope estimates for realized volatility are sub-
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stantially more precise than those for excess returns. Notably, the 95% confidence intervals
for the slope coefficients on the risk-neutral RVPs at the 1-, 3-, and 6-month horizons do not
include one, suggesting that these RVPs—corresponding to the VIX—are biased as forecasts
of realized volatility.

4.2 Forecasting Performance

In this subsection, we evaluate the forecasting performance of the RVPs for realized volatility.
A key requirement in forecasting realized volatility at time t is that only information available
up to time t may be used; no future information is permitted. To assess forecasting perfor-
mance, we employ the R2

OS statistic proposed by Campbell and Thompson (2008), which is
defined as:

R2
OS := 1−

∑
t(RVt,T − R̂Vt,T )

2∑
t(RVt,T − R̄Vt,T )2

, (4.1)

where R̂Vt,T represents the forecasted realized volatility, and R̄Vt,T denotes the historical
average of realized volatility based on an expanding window using information available up
to time t. The R2

OS statistics compares the mean squared predictive error (MSPE) of the
forecasted realized volatility to that of the historical average. It ranges from −∞ to 1, with
R2

OS > 0 indicating that the forecasted realized volatility R̂Vt,T outperforms the historical
average benchmark R̄Vt,T in terms of MSPE.

In the full-sample forecasting test, we use the RVPs as the forecasted realized volatility:

R̂Vt,T = RVPt, (4.2)

excluding the BGX RVP. This exclusion is due to the fact that estimating the parameters
of the BGX SDF requires market data from portions of the sample period that are not yet
available at time t, thereby violating the information constraint inherent in the forecasting
test. In contrast, the other RVPs do not involve any parameter estimation and thus satisfy
the requirement. The expanding window used to calculate the historical average benchmark
begins in January 1997, which is 10 years prior to the start of the full-sample period in
January 2007.

In the out-of-sample forecasting test, we divide the sample period into two subperiods:
the in-sample period is set from January 2007 to December 2016, and the out-of-sample
period spans from January 2017 to August 2023. For this test, we estimate the predictive
regression model recursively as follows:

R̂Vt,T = αt + βtRVPt, (4.3)

where αt and βt denote the intercept and slope coefficient, respectively, estimated using all
data available up to time t. The forecasted realized volatility in (4.3) can be interpreted
as a bias-adjusted version of the RVP. For comparison, we also use the forecast based on
the raw RVP, as in (4.2), in the out-of-sample forecasting test. For the BGX RVP, the
parameters of the BGX SDF are estimated using an expanding window over the sample
period. The resulting parameter estimates are reported in Table 12 of Appendix C. The
expanding window for computing the historical average benchmark in the out-of-sample test
begins in January 2007.
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We evaluate forecast accuracy using an MSPE-based test. The null hypothesis is that
the MSPE of the historical average benchmark is less than or equal to that of the forecasted
realized volatility, against the one-sided alternative that the benchmark MSPE is greater than
the forecasted volatility MSPE. Equivalently, this corresponds to testing R2

OS ≤ 0 versus
R2

OS > 0. The p-values are calculated using standard errors corrected for autocorrelation
following Newey and West (1987). When the forecasted realized volatility is the bias-adjusted
RVP from (4.3), we employ the MSPE-adjusted statistic proposed by Clark and West (2007)
to account for the fact that the forecast model nests the historical average benchmark.

Table 5 reports the forecasting performance for realized volatility based on daily data.
Results using monthly data, reported in the Internet Appendix, are very similar. All R2

OS

values are expressed as percentages.
According to the full-sample results, all forecasters produce positive R2

OS values except for
the risk-neutral forecaster at the 6-month horizon. For this forecaster, R2

OS is not statistically
significantly positive at horizons of 3 months or longer. Hence, beyond a 3-month horizon, the
VIX-like index does not necessarily outperform the historical average benchmark in forecast-
ing realized volatility. By contrast, the CRRA2, CRRA3, and CYL forecasters consistently
yield higher R2

OS values than the risk-neutral forecaster, and their performance is statistically
significant across all horizons. These results indicate that, in the full-sample test, these three
forecasters demonstrate superior predictive power relative to both the risk-neutral forecaster
and historical average benchmark.

Turning to the out-of-sample results using the bias-adjusted RVP, R2
OS is significantly

positive for all forecasters at every forecasting horizon. When using the raw RVP instead,
only the CRRA2 and CYL forecasters maintain significantly positive R2

OS across all horizons.
Notably, for the risk-neutral forecaster, R2

OS based on the raw RVP is 6% to 30% lower than
its bias-adjusted counterpart, indicating a systematic bias in the VIX-like index. In contrast,
the CRRA2, CRRA3, and CYL forecasters show equal or even higher R2

OS values when using
the raw RVP compared to the bias-adjusted RVP, suggesting that the bias adjustment may
lead to overfitting in these cases.

Taken together, the full-sample and out-of-sample results suggest that the CRRA2 and
CYL forecasters provide the most reliable and unbiased forecasts of realized volatility.

For comparison, we conduct the same forecasting performance tests on excess returns,
using the ERP in place of the RVP as the predictor. The results are reported in Table 6.
Across both the full-sample and out-of-sample tests, the R2

OS values for forecasted excess
returns are substantially lower than those for forecasted realized volatility. In many cases,
the values are close to zero or negative and fail to reach statistical significance. The lone
exception occurs the 6-month horizon in the full-sample test, and in the out-of-sample test
for the CRRA2, CRRA3, and BGX forecasters at the 1-month horizon, as well as for the
CRRA2 forecaster at the 2-month horizon. These findings indicate that, relative to realized
volatility, none of the forecasters consistently produces reliable predictions of excess returns.

4.3 Skewness and Kurtosis as Predictors of Realized Volatility

A limitation of the RVP is that the stock price process in (2.2) does not account for price
jumps. Incorporating jumps in a model-free framework, however, remains a challenging task.
As an alternative, this subsection explores the use of skewness and kurtosis of the net price
return distribution perceived by a forecaster as predictive variables to enhance the RVP.
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It is well established that negative price jump risk induces negative skewness and elevated
excess kurtosis, typically accompanied by heightened volatility (Merton, 1976; Kou, 2002).
Therefore, skewness and kurtosis may be regarded as practical proxies for jump risk.

4.3.1 SKW and KRT

For a forecaster operating under the physical measure P, skewness (hereafter SKW) and
excess kurtosis (hereafter KRT) of the net price return at time t are defined respectively as

SKWt :=
mP

3 − 3mP
1 SD

2
t − (mP

1)
3

SD3
t

,

and

KRTt :=
mP

4 − 4mP
1m

P
3 + 6(mP

1)
2mP

2 − 3(mP
1)

4

SD4
t

− 3,

where

SDt :=
√

mP
2 − (mP

1)
2,

and

mP
n := EP

t

[(
ST

St
− 1

)n]
.

Here, SDt denotes the standard deviation of the net price return, and mP
n is the n-th non-

central moment of the net price return under the physical measure. For the risk-neutral,
CRRA, and BGX forecasters, these moments are computed using the formula in (2.5) with
ft(x) = (x/St − 1)n, whereas the corresponding procedure for the CYL forecaster is detailed
in Appendix B.

Summary statistics for SKWs and KRTs across forecasters and forecasting horizons are
provided in the Internet Appendix. The means of SKWs are negative, ranging from -1.37 to
-0.56, whereas the means of KRTs range from 1.56 to 4.17. SKWs exhibit smaller standard
deviations than KRTs. The distributions of SKWs are positively skewed for all forecasters
except the risk-neutral and log-utility forecasters at the 1-month horizon, while the distribu-
tions of KRTs exhibit positive skewness across all forecasters and horizons. Both SKW and
KRT distributions display pronounced excess kurtosis. Correlations among RVPs, SKWs,
and KRTs are non-negligible. For example, for the CYL forecaster at the 1-month horizon,
the correlation between the RVP and SKW is 0.70, while that between the RVP and KRT is
-0.58. Overall, RVPs tend to be positively correlated with SKWs and negatively correlated
with KRTs.

4.3.2 In-Sample Predictive Regression

To assess whether skewness and kurtosis enhance predictive power, we run a multivariate
predictive regression using the full-sample data, including SKW and KRT alongside RVP as
predictors. To address multicollinearity among the predictors and remove irrelevant variation,
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we employ the partial least squares (PLS) regression method. PLS is a linear dimension-
reduction technique that projects both the dependent variable and the set of predictors onto a
new space that maximizes their covariance, thereby identifying components most relevant for
prediction. Originally proposed by Wold (1966, 1975), PLS regression has been successfully
applied in return forecasting by Kelly and Pruitt (2013) and Huang et al. (2015).

Table 7 reports the estimated predictor loadings of the PLS components for each forecaster
at the 1- and 2-month horizons. Results for other forecasting horizons, presented in the
Internet Appendix, exhibit similar patterns. All forecasters and horizons display a common
structure across the first two PLS components. For the first component, both RVP and
SKW have positive loadings, while KRT has a negative loading. By contrast, the second
component assigns positive loadings to RVP and KRT and a negative loading to SKW. This
second component thus captures a dynamic in which an increase in RVP is associated with
more negative SKW and higher KRT, and vice versa—behavior consistent with negative jump
risk in the S&P 500 index. Consequently, we interpret the second component3 as a proxy for
negative jump risk.

In Table 7, PctVar1 denotes the percentage of variance in the predictor set (RVP, SKW,
and KRT) explained by each PLS component, while PctVar2 represents the percentage of
variance in the dependent variable (realized volatility) explained by each component. For all
forecasters and horizons, PctVar1 for the third PLS component is substantially lower than
for the first two components. Moreover, PctVar2 for the third component remains below 1%,
indicating it contributes no meaningful predictive power for realized volatility. Therefore,
we discard the third component and retain only the first two components in the subsequent
predictive regressions.

We estimate the following bivariate regression model:

RVt,T = α+ β1X1,t + β2X2,t + εT ,

where {X1,t} and {X2,t} denote the scores on the first and second PLS components, respec-
tively.

Table 8 reports the estimated coefficients β1 and β2, along with adjusted R2 values (ex-
pressed as percentages), based on daily data with overlapping forecasting horizons. Values
in parentheses are t-statistics computed using Newey and West (1987) standard errors, with
the number of lags set to 1.5 times the number of days in the forecasting horizon. Results
for the monthly predictive regressions are presented in the Internet Appendix.

As shown in Table 8, with the only exception of the β2 estimate for the BGX forecaster at
the 6-month horizon, all coefficients are positive and statistically significant. Since RVPs have
positive loadings on both the first and second PLS components, these bivariate regression
results are consistent with the univariate regression findings in Section 4.1—namely, RVPs
possess genuine predictive power for realized volatility. At first glance, the significantly
positive β2 estimates suggest that the second component—serving as a proxy for negative
jump risk—may offer additional predictive power. However, the adjusted R2 values from
the bivariate regressions remain comparable to the ordinary R2 values from the univariate
regression shown in Table 3, indicating no substantial improvement in overall fit.

3As reported in the Internet Appendix, the CYL forecaster at the 4-month horizon and the CRRA2,
CRRA3, CYL, and BGX forecasters at the 6-month horizon deviate from the second component loading pattern
observed in Table 7. Consequently, for these forecaster-horizon combinations, the second PLS component
cannot be interpreted as a proxy for negative jump risk.
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4.3.3 Out-Of-Sample Forecasting Performance

We next evaluate the out-of-sample performance of the PLS regression model using the same
framework as in Section 4.2. The out-of-sample period spans January 2017 to August 2023.
Forecasting performance is assessed using the R2

OS statistics defined in (4.1) and the MSPE-
based test. In the out-of-sample test, the forecasted realized volatility is given by

R̂Vt,T = αt + β1,tX̂1,t + β2,tX̂2,t, (4.4)

where {X̂1,u}u≤t and {X̂2,u}u≤t represent the first and second PLS component scores, respec-
tively, extracted from data available up to time t, and αt, β1,t, and β2,t are the corresponding
coefficient estimates.

Table 9 presents the out-of-sample forecasting performance of the PLS regression models
for realized volatility, based on daily data. A large proportion of the R2

OS values are negative,
and even when the values are positive, they do not exceed 2.5% and fail to achieve statis-
tical significance under the MSPE-based test. Compared to the in-sample results in Table
8, the out-of-sample forecasting power deteriorates markedly. These findings suggest that
incorporating SKW and KRT into the PLS regression leads to pronounced overfitting. In
conclusion, the raw RVP proves to be a more reliable predictor of realized volatility than the
more complex multivariate models. Results for the monthly-based out-of-sample forecasting
performance are presented in the Internet Appendix.

4.4 Implications for Variance Swap Trading

In this subsection, we examine the implications of the RVP for volatility trading. Although
realized volatility itself is not directly tradable, realized variance—defined as the square of
realized volatility in (2.1)—can be traded via variance swaps. We evaluate the performance
of a mean-variance investor who allocates capital between a variance swap and the risk-free
asset, using the squared RVP as a predictor for future realized variance. Following Kandel
and Stambaugh (1996), Campbell and Thompson (2008), Ferreira and Santa-Clara (2011),
and Huang et al. (2015), we assess the strategy’s performance based on its Sharpe ratio and
the gain in certainty equivalent return (hereafter CER).

We consider variance swap trading over the horizon from time t to T . At time t, a
mean-variance investor allocates a fraction of wealth

wt =
1

γ

R̂v
t,T

σ̂2
t,T

,

to a variance swap maturing at time T , where γ denotes the investor’s risk aversion coefficient,
R̂v

t,T is the forecasted excess return on the variance swap, and σ̂t,T is the forecasted standard
deviation of the variance swap return. The forecasted excess return is given by

R̂v
t,T :=

RVP2
t

1

Rf
t,T

(RVPQ
t )

2
−Rf

t,T = Rf
t,T

(
RVP2

t − (RVPQ
t )

2

(RVPQ
t )

2

)
,

where RVPQ
t denotes the risk-neutral RVP, whose square serves as the variance swap rate.

Thus, we assume that the investor is not necessarily identical to the forecaster but instead
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takes a trading position in the variance swap based on the RVP provided by the selected
forecaster. The remaining weight, 1 − wt, is invested in the risk-free asset. The resulting
realized portfolio return at time T is given by

Rp
t,T = wtR

v
t,T +Rf

t,T ,

where Rv
t,T denotes the realized excess return on the variance swap, defined as

Rv
t,T := Rf

t,T

(
RV2

t,T − (RVPQ
t )

2

(RVPQ
t )

2

)
.

This framework enables us to evaluate how effectively RVP-based forecasts translate into
trading gains.

We estimate the forecasted standard deviation of variance swap returns using a rolling five-
year window of past monthly returns, following Campbell and Thompson (2008). To avoid
extreme positions, the portfolio weight wt is constrained to lie between -1.5 to 1.5. Unlike
previous studies (e.g., Campbell and Thompson, 2008; Huang et al., 2015), we allow both
long and short positions in variance swaps. As Carr and Wu (2009) demonstrate, variance
swaps tend to carry negative risk premia on average, rendering short positions essential for
achieving consistently profitable trading outcomes. To assess the sensitivity of performance
to risk aversion, we consider γ of 1, 3, and 5, in line with Huang et al. (2015).

This trading performance exercise also serves as a comparison between the predictive
performance of each RVP and the risk-neutral RVP. When a forecaster’s RVP exceeds the risk-
neutral RVP, the investor takes a long position in the variance swap (wt > 0); if the forecast
is accurate (Rv

t,T > 0), the investor earns a positive excess portfolio return (wtR
v
t,T > 0).

Conversely, when a forecaster’s RVP is below the risk-neutral RVP, the investor takes a short
position in the variance swap (wt < 0), and a correct forecast (Rv

t,T < 0) again yields a
positive excess return. Hence, a forecaster whose RVP consistently outperforms the risk-
neutral benchmark should generate a positive Sharpe ratio for the corresponding trading
strategy. We calculate the Sharpe ratio as the sample mean of excess portfolio returns
divided by their sample standard deviation, using observations from January 2013 through
August 2023. The preceding window—from January 2007 to December 2012—is reserved for
estimating the forecasted standard deviation of variance swap returns.

The CER of the trading strategy is defined as

CER := µp −
1

2
γσ2

p,

where µp and σ2
p denote the sample mean and variance of portfolio returns over the evaluation

period, respectively. We measure the CER gain as the difference between the CER obtained
using an RVP-based forecast and the CER obtained using the historical average of realized
variance as the forecast. The historical benchmark is calculated using a rolling five-year
window of past monthly realized variance observations.

Table 10 summarizes the variance swap trading results, reporting both Sharpe ratios and
CER gains on an annualized basis. All Sharpe ratios are positive, including those obtained
using the historical average of realized variance as the forecast. Across all levels of risk
aversion, strategies based on RVPs consistently yield higher Sharpe ratios than the historical
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benchmark. For example, with γ = 3 and the CYL RVP, the Sharpe ratio exceeds the
benchmark by 0.15 to 0.36 points across the five trading horizons. Moreover, with exception
of the BGX RVP, Sharpe ratios tend to increase monotonically with the degree of risk aversion,
suggesting enhanced performance for more risk-averse investors.

Table 10 also shows that while many RVP-based strategies generate positive CER gains,
some result in CER losses. Across all trading horizons and levels of risk aversion, strategies
based on the log-utility and CYL RVPs consistently deliver positive CER gains and perform
as well as or better than those using other RVPs. This result indicates that the RVPs
of these two forecasters offer superior predictive power for guiding variance swap trading.
With the exception of the BGX forecaster, CER gains generally increase with the investor’s
risk aversion coefficient, implying that more risk-averse investors benefit more from accurate
volatility forecasts. For instance, under γ = 1, the CYL-based CER gains range from 0.3
to 6.1, whereas under γ = 5, they increase substantially, ranging from 1.5 to 94.4. Notably,
high levels of risk aversion combined with short trading horizons tends to yield particularly
large CER gains.

For comparison, we conduct a parallel trading performance exercise, in which a mean-
variance investor allocates capital between the S&P 500 index and the risk-free asset, using
the ERP as a predictor for future realized returns on the S&P 500. The results are reported
in Table 11. All Sharpe ratios presented in the table are positive, and their magnitudes
generally exceed those observed in Table 10 for variance swap trading.

However, the Sharpe ratios achieved using ERP-based forecasts differ only marginally
from those obtained using the historical average return, suggesting that the ERP adds lim-
ited predictive value for market returns. In line with this observation, the CER gains in
Table 11 are uniformly small and never exceed 0.03. These values are more than an order
of magnitude lower than those documented in Table 10, where RVP-based variance swap
strategies frequently yield CER gains of several points or more. Taken together, these re-
sults suggest that ERP-based forecasts fail to meaningfully improve investor utility relative
to a simple historical average benchmark. In contrast, RVP-based forecasts applied to vari-
ance swap trading produce substantial enhancements in both Sharpe ratios and CERs. The
economic implication is that while the predictability of equity returns via ERPs appears lim-
ited, volatility predictability—when appropriately captured through RVPs—provides a more
robust foundation for active trading strategies.

5 Conclusion

This paper investigates which type of forecaster, differentiated by risk preferences, exhibits
superior predictive power for the realized volatility of the S&P 500 index. We evaluate five
forecasters: the log-utility forecaster following Martin (2017), CRRA forecasters with relative
risk aversion coefficients of 2 and 3, the CYL forecaster of Chabi-Yo and Loudis (2020), and
the BGX forecaster of Bakshi et al. (2023). The risk-neutral forecast, corresponding to the
VIX index, serves as a benchmark. Our empirical analysis spans five forecasting horizons: 1,
2, 3, 4, and 6 months.

The results show that the CYL forecaster consistently performs at least as well as, and
often better than, the other forecasters. This forecaster exhibits a relative risk aversion of 1,
identical to that of the log-utility forecaster, and a relative prudence of 4, matching that of
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the CRRA3 forecaster. Expectation hypothesis regressions indicate that the CYL forecaster
forms rational expectations of future realized volatility at all horizons except for the 1-month
case. Forecasting performance test reveals that the CYL forecaster, along with the CRRA2
forecaster, delivers statistically significant predictive performance across all horizons. In the
evaluation of variance swap trading strategies, forecasts generated by the CYL and log-utility
forecasters consistently enhance trading performance, as measured by both the Sharpe ratio
and gains in certainty equivalent return, across all trading horizons.

These findings underscore the value of incorporating risk preferences into volatility fore-
casting. In particular, the CYL forecaster offers a robust and practically effective alternative
to traditional forecasting approaches. Moreover, other forecasters also demonstrate predictive
advantages over the risk-neutral benchmark in most cases, further validating the relevance
of risk-preference-based perspectives. Importantly, forecasts that reflect investor preferences
produce unbiased predictions of realized volatility—meaning that their RVPs do not require
ex-post bias correction. By contrast, the risk-neutral forecast—namely, the VIX-like index—
exhibits a systematic bias.

We also explore the role of price jump risk in volatility forecasting by augmenting the
PLS regression models to include skewness and kurtosis of S&P 500 returns as proxies for
jump risk. While the in-sample regression results suggest that these higher-order moments
may provide incremental predictive value, the out-of-sample performance of the augmented
models deteriorates markedly, likely due to overfitting. This outcome reinforces the practical
usefulness of raw RVPs as parsimonious and robust predictors of realized volatility.

Future research could pursue at least two important extensions. First, extending the
analysis beyond the U.S. equity market to include major international stock indices, such as
the Nikkei 225, FTSE 100, or EURO STOXX 50, would allow for testing the robustness of risk-
preference-based forecasts across different market structures and volatility regimes. Such an
investigation would help determine whether the relative advantages of risk-preference-based
forecasts persist in the presence of variations in trading volume, institutional participation,
and country specific market conditions.

Second, comparing risk-preference-based forecasts with those generated by established
time-series models, such as GARCH, HAR, or stochastic volatility models, would clarify the
relative strengths and limitations of preference-sensitive versus purely statistical approaches.
By pursuing these directions, future work can deepen our understanding of the interplay
between investor heterogeneity and realized volatility dynamics and potentially guide the
development of more accurate and practically useful forecasting methods.

A Derivations of (2.5) and (2.6)

Consider the time-t price of a contingent claim that pays ft(ST )/mt(ST ) at maturity T .
Under the physical measure P, the price can be expressed as

EP
t

[
mt,T

ft(ST )

mt(ST )

]
= EP

t

[
EP
t

[
mt,T

ft(ST )

mt(ST )
| ST

]]
= EP

t [ft(ST )] . (A.1)
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This follows from the law of iterated expectations. On the other hand, under a risk-neutral
measure, denoted as Q, the price is given by

1

Rf
t,T

EQ
t

[
ft(ST )

mt(ST )

]
=

1

Rf
t,T

(
ft(F )

mt(F )

)
+

∫ F

0

(
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)′′
Pt(K)dK

+

∫ ∞

F

(
ft(K)

mt(K)

)′′
Ct(K)dK, (A.2)

where EQ
t [ · ] denotes the time-t conditional expectation operator under Q. This expression

utilizes the static replication formula from Carr and Madan (1998). Since (A.1) and (A.2)
represent the same price, it follows that the expression in (2.5) holds. By setting ft(ST ) = 1
and mt = ctnt(ST ), we obtain (2.6). □

B Supplementary Notes on CYL Forecaster

B.1 Risk Aversion, Prudence, and Temperance

Chabi-Yo and Loudis (2020) define the following preference parameters:

τ :=
1

A
, ρ :=

1

2

P
A
, κ :=

1

2

P
A

1

3

T
A
.

The parameter τ represents the risk tolerance, while ρ and κ are referred to as skewness
and kurtosis tolerance, respectively. To derive a parameter-free lower bound for the equity
premium, Chabi-Yo and Loudis (2020) impose the following restrictions on the preference
parameters:

1

τ
= 1,

(1− ρ)

τ2
= −1, and

(1− 2ρ+ κ)

τ3
= 1.

These restrictions imply that the CYL forecaster exhibits relative risk aversion of A = 1,
relative prudence of P = 4, and relative temperance of T = 6.

B.2 Risk-Neutral Moment

The n-th oder risk-neutral moment of the excess price return on the stock is defined as

MQ
n := EQ

t

[(
ST

St
−Rf

t,T

)n]
,

and can be expressed as

MQ
n =

n(n− 1)Rf
t,T

S2
t

[∫ Rf
t,TSt

0

(
K

St
−Rf

t,T

)n−2

Pt(K)dK

+

∫ ∞

Rf
t,TSt

(
K

St
−Rf

t,T

)n−2

Ct(K)dK

]
. (B.1)

A detailed derivation of (B.1) is provided in Appendix B.2 of Chabi-Yo and Loudis (2020).
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B.3 Physical Moment

According to Chabi-Yo and Loudis (2020), the n-th order physical moment of the excess price
return on the stock, defined as

MP
n := EP

t

[(
ST

St
−Rf

t,T

)n]
,

can be approximated by

MP
n ≈ MQ

n +BRn,

where BRn is the restricted bound as derived in Chabi-Yo and Loudis (2020), and is given by

BRn :=

∑3
k=1(−Rf

t,T )
−k
(
MQ

n MQ
k −MQ

n+k

)
1−

∑3
k=1(−Rf

t,T )
−kMQ

k

. (B.2)

To obtain the skewness and kurtosis of the net price return on the stock for the PLS
regression analysis in Section 4.3, physical moments of the net price return up to the fourth
order are required. Using the binomial theorem, the n-th order physical moment is given by

mP
n = EP

t

[(
ST

St
− 1

)n]
=

n∑
k=0

(
n

k

)(
Rf

t,T − 1
)k

MP
n−k.

C Supplementary Notes on BGX Forecaster

C.1 Pricing Formula for Volatility Contract

Bakshi et al. (2023) provide the model-free pricing formula for the volatility contract with
payoff {log(ST /St)}2 as follows:

vt :=
1

Rf
t,T

EQ
t

[{
log

ST

St

}2
]

= 2

∫ St

0

1− log K
St

K2
Pt(K)dK + 2

∫ ∞

St

1− log K
St

K2
Ct(K)dK.

C.2 Parameter Estimation

The original SDF projection in Bakshi et al. (2023) is not mt(ST ) as defined in (2.8), but
rather nt(ST ). Following their methodology, we estimate the parameters η0 and η1 associated
with the original SDF nt(ST ) by solving the following relative entropy minimization problem:

inf
(η0,η1)

EP [nt(ST ) log nt(ST )] , (C.1)

subject to the constraints

EP [nt(ST )] = EP
[
1/Rf

t,T

]
and EP [nt(ST )Zt,T ] = 0.
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We implement the Lagrangian dual problem of (C.1), given by

inf
(η0,η1)

−EP
[
1/Rf

t,T

]
η0 + EP [exp (η0 − 1 + η1Zt,T )] . (C.2)

To obtain (η0, η1), we approximate the unconditional expectations in (C.2) using historical
averages.

We use monthly market data from January 2007 through August 2023 to estimate the
parameters. Table 12 presents the estimates of (η0, η1), obtained from expanding-window
samples. To assess the statistical significance of these estimates, we employ a stationary
bootstrap procedure, resampling from the historical data of (Rf

t,T , Zt,T ). We generate 1,000
bootstrap replications and construct 90% confidence intervals for (η0, η1) based on the em-
pirical percentiles of the bootstrap distribution. The table shows that most of the parameter
estimates for η1 are statistically significantly positive at the 10% level, suggesting that the
BGX forecaster exhibits aversion to volatility risk. An exception is observed for the 1-month
horizon over the sample periods from 2007 to 2018, where the estimates are not statistically
significant. For the full-sample analysis, we use the estimates obtained from the 2007–2023
period, whereas the estimates based on expanding-window samples are employed for the
out-of-sample analysis.
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Figure 1: Market Forecasting
The figure displays näıve predictive regressions for forecasting future S&P 500 index dynamics, based on
monthly data from October 2003 to January 2023 and presented in annualized terms. Panel A shows the
result from regressing excess returns over the subsequent 180 days on the dividend-price ratio. Panel B shows
the result from regressing realized volatility over the subsequent 30 days on the VIX index.
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Figure 2: Risk Preferences of Forecasters
The figure displays the levels of risk preference for five forecasters (Log-U, CRRA2, CRRA3, CYL, and BGX)
with respect to gross market returns. Panels A, B, and C present relative risk aversion, relative prudence, and
relative temperance, respectively, as defined in (2.9).
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Figure 3: Time Series of RVP and ERP
The left panels of the figure display the time series of RPVs for six forecasters (RN, Log-U, CRRA2, CRRA3,
CYL, and BGX). The right panels present the time series of ERPs for the five forecasters, excluding RN. The
data consist of daily observations from January 2007 to August 2023.
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Right Panels: ERP
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Figure 4: Slope Estimates of Expectation Hypothesis Regression
The figure displays the slope estimates from the expectation hypothesis regressions based on monthly data.
The left panels show the slope estimates from regressions of realized volatility on the RPVs of six forecasters
(RN, Log-U, CRRA2, CRRA3, CYL, and BGX), as well as on historical volatility (Hist). The right panels
show the slope estimates from regressions of excess returns on the ERPs of the five forecasters, excluding RN,
as well as on historical excess returns (Hist). Dots represent point estimates, and error bars indicate 95%
confidence intervals.
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Table 1: Summary Statistics for Realized Volatility Predictors (RVPs)
The table presents summary statistics for the RPVs of six forecasters (RN, Log-U, CRRA2, CRRA3, CYL,
and BGX) and the realized volatility (Realized) of the S&P 500 index, based on daily observations from
January 2007 to August 2023. Means, standard deviations, and percentiles are annualized and expressed as
percentages.

Percentile
Mean Stdv Skew Kurt P10 P25 P50 P75 P90

Panel A: 1-month horizon

Realized 17.33 3.38 2.96 15.23 7.80 9.95 14.31 20.65 28.75

RN 19.97 2.44 2.10 9.31 12.36 14.12 17.74 23.03 29.82

Log-U 19.12 2.29 2.05 9.08 11.93 13.59 17.05 22.13 28.38

CRRA2 18.36 2.15 2.03 9.01 11.53 13.14 16.37 21.30 27.08

CRRA3 17.69 2.05 2.03 9.20 11.17 12.72 15.80 20.55 25.89

CYL 18.81 2.19 1.96 8.47 11.82 13.46 16.84 21.82 27.81

BGX 15.16 2.14 2.19 9.85 8.63 10.10 13.00 17.94 23.79

Panel B: 2-month horizon

Realized 16.56 4.17 3.04 15.89 8.44 10.48 13.58 19.84 26.15

RN 19.53 2.68 1.65 7.31 13.13 14.70 17.87 22.77 27.70

Log-U 18.30 2.44 1.56 6.82 12.40 13.88 16.75 21.36 25.79

CRRA2 17.24 2.24 1.52 6.63 11.75 13.16 15.81 20.09 24.15

CRRA3 16.33 2.09 1.53 6.84 11.22 12.53 15.02 19.02 22.72

CYL 17.75 2.27 1.41 5.94 12.12 13.59 16.33 20.72 24.86

BGX 14.52 2.34 1.70 7.61 9.01 10.38 12.92 17.24 21.69

Panel C: 3-month horizon

Realized 17.56 5.09 2.65 12.17 9.05 11.19 14.32 20.57 26.89

RN 20.49 3.22 1.52 6.97 13.97 15.61 19.07 23.81 28.37

Log-U 18.88 2.86 1.42 6.37 13.01 14.49 17.59 21.97 25.87

CRRA2 17.52 2.58 1.36 5.98 12.18 13.56 16.37 20.39 23.71

CRRA3 16.40 2.37 1.34 5.93 11.51 12.77 15.34 19.11 22.06

CYL 17.96 2.55 1.21 5.18 12.58 13.97 16.86 20.95 24.19

BGX 15.23 2.83 1.61 7.39 9.64 11.00 13.83 18.27 21.90

Panel D: 4-month horizon

Realized 17.57 5.84 2.29 9.39 8.96 11.43 14.49 20.81 26.80

RN 21.01 3.74 1.47 6.11 14.44 16.15 19.65 24.27 28.93

Log-U 19.09 3.26 1.37 5.64 13.29 14.79 17.88 22.09 25.97

CRRA2 17.51 2.90 1.30 5.31 12.30 13.66 16.47 20.35 23.52

CRRA3 16.27 2.64 1.26 5.14 11.46 12.75 15.36 18.95 21.66

CYL 17.79 2.80 1.15 4.73 12.63 14.02 16.86 20.73 23.77

BGX 15.41 3.30 1.52 6.35 9.76 11.15 14.05 18.53 22.13

Panel E: 6-month horizon

Realized 16.26 5.11 1.86 8.49 9.83 11.67 13.87 19.82 24.96

RN 20.82 3.82 1.12 4.20 15.26 16.64 19.58 23.79 28.80

Log-U 18.54 3.26 1.09 4.00 13.77 15.04 17.42 21.19 25.16

CRRA2 16.75 2.88 1.13 4.22 12.52 13.72 15.72 19.16 22.33

CRRA3 15.40 2.65 1.23 4.76 11.56 12.67 14.41 17.66 20.22

CYL 16.63 2.69 1.11 4.28 12.65 13.82 15.71 18.93 21.72

BGX 14.38 3.29 1.23 4.71 9.76 11.08 13.10 16.90 20.85
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Table 2: Summary Statistics for Excess Return Predictors (ERPs)
The table reports summary statistics for the ERPs of five forecasters (Log-U, CRRA2, CRRA3, CYL, and
BGX) and the realized excess returns (Realized) of the S&P 500 index, based on daily observations from
January 2007 to August 2023. Means, standard deviations, and percentiles are annualized and expressed as
percentages.

Percentile
Mean Stdv Skew Kurt P10 P25 P50 P75 P90

Panel A: 1-month horizon

Realized 6.99 17.57 -1.26 8.99 -67.76 -21.42 15.52 42.75 66.51

Log-U 4.45 1.37 4.08 25.88 1.46 1.90 2.99 5.05 8.34

CRRA2 8.54 2.61 4.10 26.20 2.82 3.66 5.76 9.73 15.89

CRRA3 12.35 3.77 4.14 26.87 4.10 5.32 8.33 14.13 23.05

CYL 4.92 1.58 4.27 28.06 1.58 2.06 3.26 5.50 9.23

BGX 7.02 0.93 1.44 7.76 4.05 5.00 6.39 8.21 11.16

Panel B: 2-month horizon

Realized 7.47 15.92 -1.11 7.65 -42.28 -8.22 12.69 31.25 45.30

Log-U 3.91 1.24 3.34 22.36 1.60 2.01 2.94 4.79 7.04

CRRA2 7.38 2.33 3.31 21.83 3.04 3.82 5.56 9.06 13.24

CRRA3 10.50 3.29 3.32 21.94 4.34 5.46 7.92 12.89 18.75

CYL 4.50 1.51 3.74 28.36 1.81 2.27 3.37 5.47 8.16

BGX 5.55 0.83 0.98 6.45 3.46 4.18 5.20 6.51 8.08

Panel C: 3-month horizon

Realized 7.53 15.89 -1.06 6.69 -33.50 -6.20 12.97 27.00 39.13

Log-U 4.17 1.49 3.18 21.41 1.78 2.22 3.28 5.14 7.19

CRRA2 7.77 2.74 3.13 20.77 3.35 4.15 6.13 9.61 13.34

CRRA3 10.93 3.83 3.11 20.51 4.73 5.88 8.65 13.52 18.70

CYL 4.97 1.89 3.68 28.40 2.07 2.59 3.88 6.07 8.69

BGX 4.91 0.79 0.87 5.17 3.27 3.83 4.63 5.73 6.95

Panel D: 4-month horizon

Realized 7.81 15.76 -1.04 5.79 -26.47 -4.83 11.97 23.53 37.65

Log-U 4.30 1.72 2.67 13.45 1.88 2.34 3.44 5.27 7.31

CRRA2 7.94 3.14 2.63 13.15 3.50 4.34 6.36 9.77 13.51

CRRA3 11.09 4.35 2.61 12.92 4.89 6.08 8.92 13.67 18.63

CYL 5.28 2.25 2.98 16.20 2.23 2.80 4.16 6.40 9.18

BGX 4.50 0.83 0.94 5.50 3.07 3.52 4.23 5.22 6.50

Panel E: 6-month horizon

Realized 11.33 13.38 -0.12 5.59 -11.89 1.63 12.35 21.30 32.40

Log-U 4.03 1.58 1.78 6.85 2.05 2.45 3.33 4.96 7.11

CRRA2 7.35 2.87 1.80 6.95 3.76 4.49 6.04 9.00 12.78

CRRA3 10.16 3.98 1.85 7.26 5.21 6.24 8.36 12.50 17.60

CYL 5.14 2.13 1.96 8.42 2.54 3.03 4.20 6.29 9.36

BGX 4.11 1.01 0.04 6.13 2.85 3.31 3.91 4.77 6.03
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Table 5: Forecasting Performance for Realized Volatility
The table reports the results of the forecasting performance test for realized volatility of the S&P 500

index. The full-sample period spans from January 2007 to August 2023, while the out-of-sample period covers
January 2017 to August 2023. R2

OS denotes the out-of-sample R2 statistic of Campbell and Thompson (2008),
expressed as percentages. Statistical significance is assessed using the MSPE-based test, with asterisks (∗, ∗∗,
∗∗∗) indicating the 10%, 5%, and 1% levels, respectively.

Full-sample Out-of-sample

Forecasted volatility R̂Vt,T = RVPt R̂Vt,T = αt + βtRVPt R̂Vt,T = RVPt

R2
OS R2

OS R2
OS

Panel A: 1-month horizon

RN 48.4∗∗ 32.9∗∗∗ 26.8∗∗∗

Log-U 50.8∗∗ 32.8∗∗∗ 30.5∗∗∗

CRRA2 51.7∗∗∗ 32.7∗∗∗ 32.7∗∗∗

CRRA3 51.4∗∗∗ 32.6∗∗∗ 33.6∗∗∗

CYL 50.9∗∗ 32.6∗∗∗ 33.6∗∗∗

BGX 33.0∗∗∗ 31.4∗∗∗

Panel B: 2-month horizon

RN 29.7∗ 25.2∗∗∗ 13.7

Log-U 35.5∗∗ 25.3∗∗∗ 22.5∗∗

CRRA2 37.7∗∗∗ 25.3∗∗∗ 26.8∗∗∗

CRRA3 37.5∗∗∗ 25.3∗∗∗ 28.0∗∗∗

CYL 36.6∗∗ 25.1∗∗∗ 25.1∗∗∗

BGX 25.7∗∗∗ 24.5∗∗

Panel C: 3-month horizon

RN 20.8 23.6∗∗∗ 6.1

Log-U 29.7∗ 23.2∗∗∗ 19.5

CRRA2 32.5∗∗ 22.6∗∗∗ 25.2∗∗

CRRA3 31.7∗∗ 22.1∗∗∗ 26.0∗∗

CYL 31.3∗∗ 22.1∗∗∗ 23.7∗∗∗

BGX 23.3∗∗∗ 22.4

Panel D: 4-month horizon

RN 21.8 32.7∗∗∗ 11.8

Log-U 32.0∗ 32.0∗∗∗ 28.5∗

CRRA2 34.2∗∗ 30.9∗∗ 34.0∗

CRRA3 32.2∗∗ 29.7∗∗ 33.0∗

CYL 32.6∗∗ 30.5∗∗ 33.2∗

BGX 31.1∗∗ 30.1

Panel E: 6-month horizon

RN −14.9 21.6∗∗∗ −8.3

Log-U 18.0 21.0∗∗∗ 18.4

CRRA2 29.1∗∗ 19.8∗∗∗ 23.7∗∗

CRRA3 29.2∗ 18.1∗∗ 18.4

CYL 28.2∗∗ 19.9∗∗∗ 24.2∗∗

BGX 18.6∗∗∗ 13.7
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Table 6: Forecasting Performance for Excess Return
The table reports the results of the forecasting performance test for excess returns on the S&P 500 index. The
full-sample period spans from January 2007 to August 2023, while the out-of-sample period covers January
2017 to August 2023. R2

OS denotes the out-of-sample R2 statistic of Campbell and Thompson (2008), expressed
as percentages. Statistical significance is assessed using the MSPE-based test, with asterisks (∗, ∗∗, ∗∗∗)
indicating the 10%, 5%, and 1% levels, respectively.

Full-sample Out-of-sample

Forecasted volatility ÊRt,T = ERPt ÊRt,T = αt + βtERPt ÊRt,T = ERPt

R2
OS R2

OS R2
OS

Panel A: 1-month horizon

Log-U 0.6 0.3∗∗ 1.6

CRRA2 −0.3 0.3∗∗ 3.3∗∗

CRRA3 −2.9 0.3∗∗ 4.1∗∗

CYL 0.5 0.3∗∗ 1.8

BGX −0.1 1.3∗∗

Panel B: 2-month horizon

Log-U 1.2 0.9 1.3

CRRA2 1.5 0.8 5.0∗

CRRA3 −0.4 0.8 6.4

CYL 1.5 1.0 2.2

BGX 1.2 1.5

Panel C: 3-month horizon

Log-U 2.4 1.2 1.0

CRRA2 2.6 1.1 5.5

CRRA3 −0.3 1.1 6.6

CYL 2.8 1.1 2.2

BGX −3.2 0.5

Panel D: 4-month horizon

Log-U 3.9 −0.3 −1.4

CRRA2 4.2 −0.2 2.0

CRRA3 0.5 −0.1 1.0

CYL 4.2 −0.5 −0.3

BGX −16.2 −2.1

Panel E: 6-month horizon

Log-U 11.5∗ −3.0 5.5

CRRA2 22.8∗∗ −1.9 10.2

CRRA3 27.4∗∗ −0.9 9.0

CYL 16.1∗∗ −3.6 7.7

BGX −15.9 3.9
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Table 7: Predictor Loadings of PLS Components
The table reports the estimated predictor loadings of the PLS components for RVP, SKW, and KRT. Pct-
Var1 denotes the percentage of variance in the predictor set (RVP, SKW, and KRT) explained by each PLS
component, while PctVar2 refers to the percentage of variance in the dependent variable (realized volatility)
explained by each component. The table presents results for each forecaster at the 1- and 2-month horizons.
Results for other forecasting horizons are available in the Internet Appendix.

Component RVP SKW KRT PctVar1 PctVar2

Panel A: 1-month horizon

RN 1st 49.4 50.1 -46.7 0.79 0.41
2nd 23.9 -16.3 25.6 0.16 0.13
3rd 3.1 -15.9 -13.7 0.05 0.00

Log-U 1st 49.8 49.3 -45.3 0.77 0.41
2nd 23.0 -15.7 26.5 0.16 0.13
3rd 3.6 -18.7 -16.5 0.07 0.00

CRRA2 1st 50.3 48.2 -43.6 0.74 0.41
2nd 22.0 -14.9 27.2 0.16 0.13
3rd 4.0 -22.0 -19.7 0.10 0.00

CRRA3 1st 50.8 46.8 -41.8 0.72 0.41
2nd 20.8 -14.3 27.2 0.15 0.13
3rd 4.1 -25.1 -23.2 0.13 0.00

CYL 1st 50.2 49.8 -45.2 0.78 0.41
2nd 22.0 -13.0 26.7 0.15 0.12
3rd 4.6 -19.5 -16.3 0.07 0.00

BGX 1st 54.7 11.8 -6.6 0.35 0.51
2nd 4.9 -44.4 48.3 0.48 0.01
3rd -3.4 30.4 25.5 0.17 0.00

Panel B: 2-month horizon

RN 1st 56.8 59.1 -57.8 0.85 0.31
2nd 26.4 -14.3 21.3 0.11 0.06
3rd -4.3 15.6 11.7 0.03 0.00

Log-U 1st 57.0 58.5 -57.2 0.84 0.31
2nd 26.0 -14.5 21.7 0.11 0.06
3rd -4.0 17.5 13.9 0.04 0.00

CRRA2 1st 57.3 57.8 -56.4 0.83 0.31
2nd 25.3 -14.3 22.0 0.11 0.07
3rd -3.7 19.8 16.6 0.06 0.00

CRRA3 1st 57.7 56.9 -55.3 0.82 0.31
2nd 24.5 -14.0 22.0 0.11 0.07
3rd 2.9 -22.3 -19.9 0.08 0.00

CYL 1st 57.6 59.0 -57.3 0.85 0.32
2nd 24.2 -11.0 21.9 0.10 0.06
3rd -5.7 -18.4 13.2 0.05 0.00

BGX 1st 58.1 36.5 -33.8 0.50 0.33
2nd 22.5 -35.0 45.2 0.32 0.05
3rd -7.4 37.1 27.4 0.18 0.00
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Table 9: Out-of-sample Forecasting Performance of PLS Regression
The table reports the results of the out-of-sample forecasting test for the PLS regression model in (4.4), where
the realized volatility of the S&P 500 index is regressed on the scores of the first two components derived from
RVP, SKW, and KRT. The out-of-sample period spans from January 2017 to August 2023. R2

OS denotes
the out-of-sample R2 statistic of Campbell and Thompson (2008), expressed as percentages. Although we
conduct the MSPE-based test to assess the statistical significance of R2

OS , none of the values are statistically
significantly greater than zero.

Horizon 1-month 2-month 3-month 4-month 6-month

R2
OS R2

OS R2
OS R2

OS R2
OS

RN -0.2 -7.4 -14.5 -8.5 -14.1

Log-U 0.5 -7.2 -16.1 -12.9 -15.7

CRRA2 1.4 -6.7 -16.7 -16.2 -16.7

CRRA3 2.5 -6.1 -16.1 -15.4 -16.5

CYL 0.5 -6.8 -15.9 -16.2 -17.2

BGX -0.1 -5.8 -13.5 -7.0 -12.5
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Table 10: Trading Performance of Variance Swap
The table reports performance measures of variance swap trading for a mean-variance investor with risk
aversion coefficients γ = 1, 3, and 5. The investor allocates capital between a variance swap and the risk-free
asset, using the squared RVP as a predictor of future realized variance. The portfolio weight on the variance
swap is constrained to lie between -1.5 and 1.5. In this table, SR denotes the Sharpe ratio, computed as
the sample mean of excess portfolio returns divided by their sample standard deviation. ∆CER denotes the
CER gain, defined as the difference between the certainty equivalent return (CER) based on the RVP-based
forecast and that based on the historical average (Historical) of realized variance. The sample period spans
from January 2013 to August 2023. Both measures are reported in annualized terms.

γ = 1 γ = 3 γ = 5

SR ∆CER SR ∆CER SR ∆CER

Panel A: 1-month horizon

Historical 0.02 0.08 0.15

Log-U 0.17 15.3 0.23 58.3 0.24 46.3

CRRA2 0.19 -1.9 0.21 39.2 0.23 34.6

CRRA3 0.22 -3.5 0.18 14.0 0.22 19.2

CYL 0.16 6.1 0.23 53.7 0.24 43.5

BGX 0.23 -4.4 0.21 -54.3 0.17 -99.8

Panel B: 2-month horizon

Historical 0.11 0.09 0.06

Log-U 0.21 1.2 0.25 53.5 0.25 100.6

CRRA2 0.23 0.9 0.21 22.9 0.25 81.6

CRRA3 0.23 0.9 0.21 4.6 0.23 57.5

CYL 0.23 0.9 0.25 43.3 0.27 94.4

BGX 0.23 0.9 0.23 0.6 0.20 2.3

Panel C: 3-month horizon

Historical 0.16 0.16 0.18

Log-U 0.36 3.6 0.56 22.6 0.60 31.8

CRRA2 0.29 0.9 0.45 15.4 0.54 25.2

CRRA3 0.29 0.7 0.39 10.1 0.48 18.9

CYL 0.32 1.9 0.52 18.9 0.61 29.0

BGX 0.29 0.7 0.30 1.8 0.38 8.1

Panel D: 4-month horizon

Historical 0.32 0.32 0.32

Log-U 0.50 1.1 0.62 6.9 0.66 11.2

CRRA2 0.49 0.6 0.56 4.2 0.62 7.9

CRRA3 0.49 0.6 0.52 2.3 0.59 5.8

CYL 0.50 0.8 0.58 5.0 0.64 8.8

BGX 0.49 0.6 0.49 0.8 0.52 2.4

Panel E: 6-month horizon

Historical 0.43 0.46 0.53

Log-U 0.62 0.5 0.77 2.1 0.83 2.3

CRRA2 0.61 0.3 0.68 1.1 0.76 1.3

CRRA3 0.61 0.3 0.66 0.6 0.71 0.5

CYL 0.60 0.3 0.69 1.2 0.78 1.5

BGX 0.61 0.4 0.62 0.0 0.66 -0.3
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Table 11: Trading Performance of Stock Index
The table reports performance measures of stock market index trading for a mean-variance investor with
risk aversion coefficients γ = 1, 3, and 5. The investor allocates capital between the S&P 500 index and the
risk-free asset, using the ERP as a predictor of future realized returns on the index. The portfolio weight on
the stock index is constrained to lie between -1.5 and 1.5. In this table, SR denotes the Sharpe ratio, computed
as the sample mean of excess portfolio returns divided by their sample standard deviation. ∆CER denotes the
CER gain, defined as the difference between the certainty equivalent return (CER) based on the ERP-based
forecast and that based on the historical average (Historical) of realized returns. The sample period spans
from January 2013 to August 2023. Both measures are reported in annualized terms.

γ = 1 γ = 3 γ = 5

SR ∆CER SR ∆CER SR ∆CER

Panel A: 1-month horizon

Historical 0.56 0.41 0.35

Log-U 0.58 0.00 0.61 0.02 0.57 0.02

CRRA2 0.61 0.01 0.63 0.04 0.62 0.03

CRRA3 0.63 0.02 0.59 0.03 0.63 0.03

CYL 0.58 0.00 0.62 0.02 0.58 0.02

BGX 0.63 0.01 0.56 0.03 0.54 0.02

Panel B: 2-month horizon

Historical 0.72 0.61 0.54

Log-U 0.68 -0.01 0.66 0.00 0.62 0.00

CRRA2 0.75 0.01 0.68 0.01 0.66 0.01

CRRA3 0.78 0.01 0.67 0.01 0.68 0.02

CYL 0.69 -0.01 0.66 0.00 0.63 0.01

BGX 0.76 0.01 0.68 0.01 0.65 0.01

Panel C: 3-month horizon

Historical 0.73 0.62 0.58

Log-U 0.70 -0.01 0.67 -0.01 0.64 0.00

CRRA2 0.77 0.01 0.68 0.01 0.68 0.01

CRRA3 0.80 0.01 0.69 0.01 0.68 0.01

CYL 0.72 0.00 0.67 0.00 0.64 0.00

BGX 0.76 0.01 0.67 0.00 0.65 0.01

Panel D: 4-month horizon

Historical 0.78 0.68 0.66

Log-U 0.76 -0.01 0.65 -0.01 0.60 -0.01

CRRA2 0.83 0.01 0.70 0.00 0.66 0.00

CRRA3 0.87 0.02 0.74 0.01 0.68 0.00

CYL 0.78 0.00 0.64 -0.01 0.61 -0.01

BGX 0.81 0.00 0.70 0.00 0.67 0.00

Panel E: 6-month horizon

Historical 0.80 0.66 0.62

Log-U 0.77 -0.01 0.61 -0.01 0.57 -0.01

CRRA2 0.86 0.01 0.69 0.00 0.62 0.00

CRRA3 0.91 0.02 0.74 0.01 0.67 0.01

CYL 0.80 0.00 0.63 -0.01 0.58 0.00

BGX 0.81 0.00 0.65 0.00 0.61 0.00
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Table 12: Parameter Estimates for BGX
The table reports the estimated parameters η0 and η1 of the BGX SDF in (2.8), obtained by solving the
optimization problem in (C.2) based on monthly data of expanding window samples. It also presents 90%
confidence intervals for the estimates, constructed from the empirical percentiles of the bootstrap distribution
based on 1,000 bootstrap replications.

Expanding samples η0 Bootstrap CIs η1 Bootstrap CIs

Start End Estimate Lower Upper Estimate Lower Upper

Panel A: 1-month horizon

2007 2016 1.02 1.00 1.14 0.10 -0.05 0.49
2007 2017 1.02 1.00 1.14 0.11 -0.03 0.53
2007 2018 1.02 1.00 1.11 0.12 -0.03 0.46
2007 2019 1.02 1.00 1.15 0.13 0.00 0.55
2007 2020 1.03 1.00 1.15 0.13 0.00 0.53
2007 2021 1.03 1.00 1.17 0.14 0.00 0.56
2007 2022 1.03 1.00 1.15 0.15 0.01 0.53
2007 2023 1.03 1.00 1.17 0.15 0.02 0.56

Panel B: 2-month horizon

2007 2016 1.03 1.00 1.14 0.12 0.02 0.40
2007 2017 1.03 1.00 1.16 0.13 0.02 0.47
2007 2018 1.03 1.00 1.13 0.13 0.02 0.43
2007 2019 1.03 1.00 1.10 0.14 0.03 0.25
2007 2020 1.04 1.00 1.15 0.15 0.05 0.49
2007 2021 1.04 1.00 1.16 0.16 0.04 0.49
2007 2022 1.04 1.01 1.13 0.16 0.05 0.42
2007 2023 1.04 1.00 1.11 0.17 0.05 0.27

Panel C: 3-month horizon

2007 2016 1.04 1.00 1.15 0.14 0.01 0.40
2007 2017 1.04 1.00 1.27 0.15 0.01 0.44
2007 2018 1.03 1.00 1.13 0.14 0.02 0.38
2007 2019 1.04 1.00 1.14 0.15 0.03 0.41
2007 2020 1.04 1.00 1.11 0.15 0.03 0.34
2007 2021 1.04 1.00 1.13 0.16 0.04 0.37
2007 2022 1.04 1.00 1.13 0.17 0.05 0.39
2007 2023 1.04 1.00 1.13 0.17 0.04 0.37

Panel D: 4-month horizon

2007 2016 1.03 1.00 1.11 0.13 0.01 0.30
2007 2017 1.03 1.00 1.12 0.14 0.01 0.33
2007 2018 1.04 1.00 1.12 0.15 0.03 0.33
2007 2019 1.04 1.00 1.11 0.16 0.02 0.33
2007 2020 1.04 1.00 1.12 0.16 0.04 0.34
2007 2021 1.04 1.00 1.12 0.17 0.04 0.34
2007 2022 1.04 1.00 1.12 0.18 0.05 0.35
2007 2023 1.05 1.00 1.14 0.18 0.06 0.37

Panel E: 6-month horizon

2007 2016 1.06 1.00 1.81 0.19 0.03 2.30
2007 2017 1.06 1.00 1.72 0.19 0.02 2.20
2007 2018 1.06 1.00 1.80 0.21 0.05 2.28
2007 2019 1.07 1.00 1.78 0.22 0.04 2.26
2007 2020 1.07 1.00 1.79 0.22 0.06 2.33
2007 2021 1.07 1.01 1.79 0.22 0.06 2.30
2007 2022 1.08 1.01 1.87 0.23 0.07 2.48
2007 2023 1.08 1.01 1.85 0.24 0.08 2.45
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